
Windows 8

User experience guidelines

© 2012 Microsoft. All rights reserved. | August 14, 2012

2

TABLE OF CONTENTS

INTRODUCTION ... 6

Windows 8 design principles .. 6

Anatomy of a Windows Store app ... 8

Design for form factors .. 13

NAVIGATION, LAYOUTS, AND VIEWS .. 15

Navigation design .. 15

Guidelines for navigation links ... 27

Page layout design .. 28

View state design ... 34

Guidelines for views .. 36

Guidelines for scaling to pixel density ... 37

Guidelines for scaling to screens ... 40

Guidelines for snapped and fill views .. 53

Guidelines for resizing ... 58

Branding design ... 59

TOUCH, COMMANDING, AND CONTROLS ... 65

Touch interaction design .. 65

Guidelines for touch input.. 76

Guidelines for cross-slide ... 76

Guidelines for optical zoom and resizing ... 83

Guidelines for panning .. 86

Guidelines for rotation ... 92

Guidelines for Semantic Zoom ... 95

Guidelines for selecting text and images.. 101

Guidelines for targeting .. 104

© 2012 Microsoft. All rights reserved. | August 14, 2012

3

Guidelines for visual feedback .. 107

Guidelines for touch keyboard ... 113

Commanding design .. 115

Controls ... 122

Guidelines for text input ... 122

Guidelines for spell checking .. 127

Guidelines for thumbnails .. 129

Guidelines for Flyouts... 138

Guidelines for message dialogs ... 143

Guidelines for errors ... 145

Guidelines for buttons ... 150

Guidelines for login controls ... 152

Guidelines for app bars ... 156

Guidelines for context menus ... 160

Guidelines for check boxes .. 164

Guidelines for DatePickers ... 167

Guidelines for TimePickers ... 168

Guidelines for radio buttons .. 169

Guidelines for the Select control ... 171

Guidelines for sliders .. 173

Guidelines for toggle switches ... 177

Guidelines for the Rating control .. 179

Guidelines for progress controls .. 182

Guidelines for tooltips.. 192

Guidelines for FlipView controls... 194

Guidelines for ListView controls ... 196

Guidelines for file pickers ... 201

Guidelines for find-in-page.. 204

© 2012 Microsoft. All rights reserved. | August 14, 2012

4

Charms, contracts, and devices .. 207

Guidelines for sharing content ... 207

Guidelines for creating custom data formats ... 212

Guidelines for clipboard commands .. 216

Guidelines for search .. 219

Guidelines for file picker contracts .. 230

Guidelines for app settings .. 236

Guidelines for app help ... 240

Guidelines for devices that access personal data .. 242

Guidelines for location-aware apps .. 250

Guidelines for developing using proximity .. 255

Guidelines for developing print-capable apps ... 258

Guidelines for the camera UI ... 260

Guidelines for developing audio-aware apps ... 261

Animations.. 264

List animations .. 264

Transition animations ... 264

Drag-and-drop animations .. 265

Transient UI animations ... 266

Edge-based UI animations ... 268

APP ACTIVATION ... 270

Tiles ... 270

Choosing a badge image .. 278

Guidelines for badges .. 280

Guidelines for secondary tiles ... 281

Guidelines for lock screen apps ... 282

Basic app suspend and resume .. 288

Launch with file types and protocols .. 291

© 2012 Microsoft. All rights reserved. | August 14, 2012

5

Splash screens ... 292

Roaming app data ... 297

OTHER IMPORTANT USER EXPERIENCES ... 301

Notifications ... 301

Guidelines for scheduled notifications .. 302

Guidelines for periodic notifications .. 303

Guidelines for push notifications ... 304

Microsoft account sign-in ... 306

App resources.. 308

Globalization .. 309

INTRODUCTION

Microsoft design principles
Microsoft design has a set of five guiding principles to help you make the best choices when

designing your app. These principles are the foundation for building great Windows Store apps.

Consider these principles as you plan your app, and always ensure that your design and

development choices live up to these principles.

Show pride in craftsmanship

Devote time and energy to small things that your users see often. Engineer the experience to be

complete and polished at every stage.

 Sweat the details.

 Make using apps safe and reliable.

 Use balance, symmetry, and hierarchy to foster trust and a sense of integrity.

 Align your app layout to the grid, the Windows 8 UI layout for apps.

 Make your app accessible to the widest possible audience, including people who have

impairments or disabilities.

Be fast and fluid

Let people interact directly with content, and respond to actions quickly with matching energy.

Bring life to the experience by creating a sense of continuity and telling a story through

meaningful use of motion.

 Be responsive to user interaction and ready for the next interaction.

 Design for touch and intuitive interaction.

 Delight your users with motion.

 Create a UI that is immersive and compelling.

Be authentically digital

Take full advantage of the digital medium. Remove physical boundaries to create experiences

that are more efficient and effortless than reality. Being authentically digital means embracing

the fact that apps are pixels on a screen. Then you can design with colors and images that go

beyond the limits of the real world.

INTRODUCTION

Microsoft design principles

© 2012 Microsoft. All rights reserved. | August 14, 2012

7

 Connect to the cloud so that your users can stay connected to each other.

 Be dynamic and alive with communication.

 Use typography beautifully.

 Use bold, vibrant colors.

 Use motion meaningfully.

Do more with less

You can do more with less by reducing your design to its essence, and solving for distractions,

not discoverability. Create a clean and purposeful experience by leaving only the most relevant

elements on screen so people can be immersed in the content.

 Be great at something instead of mediocre at many things.

 Put content before chrome.

 Be visually focused and direct, letting people get immersed in what they love, and they

will explore the rest.

 Inspire confidence in users.

Desktop browsers have quite a lot of chrome (menus, options, status bars, and so on) that is

only sometimes useful. Typically, however, users open a browser to see a webpage, not to

interact with the browser. Moving commands off the browser chrome and into the app bar or

into charms helps users focus on what they care about.

Win as one

Work with other apps, devices, and the system to complete scenarios for people, like picking

content from one app and sharing it with another. To provide a sense of familiarity, control, and

confidence, take advantage of what people already know, like standard touch gestures and

charms,.

 Fit into the UI model.

 Reduce redundancy in your UI.

 Work with other apps to complete scenarios by participating in app contracts.

 To promote consistency, use our tools and templates.

Following these five Microsoft design principles helps you make the best choices when you

design your app.

INTRODUCTION

Anatomy of a Windows Store app

© 2012 Microsoft. All rights reserved. | August 14, 2012

8

Anatomy of a Windows Store app
Windows Store apps have a new structure and differ from traditional desktop apps that have an

always visible menu bar and modal dialogs. With Windows Store apps, you have a number of UI

surfaces you can use, like the app canvas, charms, app bars, flyouts, and dialogs. Choosing the

right surface at the right time can mean the difference between an app that is a breeze to use or

a burden.

Tiles

Tiles appear on the Start screen and replace the

application shortcuts that would have appeared on the

desktop screen and on the old Start menu. People tap your

app's tile to launch your app.

The app page, or canvas

The app page, sometimes called the canvas, is the base of your UI. The canvas holds all of your

content and controls. Whenever possible, integrate your UI elements into this base surface. For

example, don’t use a pop-up to display an error. Instead, you can smoothly show, hide, or shift

the error message in the window with the built-in animations. Presenting your UI inline lets

users fully immerse themselves in your app and stay in context.

You can create as many app pages as you need to support your user scenarios.

INTRODUCTION

Anatomy of a Windows Store app

© 2012 Microsoft. All rights reserved. | August 14, 2012

9

View states

People can snap your app so that they can use another app at the same time. Or, they can snap

another app so they can use your app. You can design your app so that the content flows

dynamically to optimize the user experience in each view state: full screen, snapped, or fill.

Full screen view

The app fills entire screen.

Snapped view

The app is snapped to a narrow region of the entire screen.

Fill view

The app fills remaining screen area not occupied by the app in

the snapped view.

App bars

Outside of the app page, the app bar is the primary command surface for your app. Use the app

bar to present navigation, commands, and tools to users. The app bar is hidden by default. It

appears, and covers the content of the app, when people swipe from the top or bottom edge of

the screen. People dismiss the app bar by swiping an edge or by interacting with the app.

INTRODUCTION

Anatomy of a Windows Store app

© 2012 Microsoft. All rights reserved. | August 14, 2012

10

Charms

The charms are a set of buttons available in every app: search, share, connect, settings, and start.

We believe these represent important actions that people want to complete in almost every app

they use.

 Search People can search for content located your app or in another app, and they can

search your app's content from another app.

 Share People can share content from your app with people or services.

 Devices People can connect to devices and send content, stream media, and print.

 Settings People can configure your app to their preferences and access user help.

 Start People can go directly to the Start screen.

INTRODUCTION

Anatomy of a Windows Store app

© 2012 Microsoft. All rights reserved. | August 14, 2012

11

Context menus

The context menu, sometimes called a popup menu, shows actions that people can perform on

text or UI elements in an app. You can use up to five commands on each content menu, like cut,

copy, or open with. This limit keeps the context menu uncluttered, easy-to-read, and directly

relevant to the text or object that the commands act on.

Don't use context menus as the primary command interface for an app. That's what the app bar

is for.

Message dialogs

Message dialogs are dialogs that require explicit user interaction. They dim the app window and

demand a response before continuing. Use message dialogs only when you intend to block

people from using your app until they respond.

In the example above, the app window is dimmed, and the user must tap one of the two buttons

to dismiss the dialog. That is, the message in the dialog cannot be ignored.

Flyouts

Flyouts show temporary, dismissible UI related to what people are currently doing in your app.

For example, you can use flyouts to ask the user to confirm an action, to show a drop-down

menu from a button on the app bar, or to show more details about an item. Flyouts are different

INTRODUCTION

Anatomy of a Windows Store app

© 2012 Microsoft. All rights reserved. | August 14, 2012

12

from message dialogs. Unlike a dialog, you show a flyout only in response to a user tap or click,

and you always dismiss the flyout when the user taps outside of it.

In the example above, the app stays active, and the user can tap the button or tap outside the

flyout to dismiss it. That is, the message in the flyout can be ignored.

Toasts

Toasts are notifications that you show to people when your app is in the background. Toasts are

good for updating people with information they want to know in real time, but it's ok if they

miss. People tap on the toast to switch to your app and learn more.

People can find toast notifications disruptive and annoying, so be thoughtful about when you

want to show a toast to users.

INTRODUCTION

Design for form factors

© 2012 Microsoft. All rights reserved. | August 14, 2012

13

Design for form factors
Windows Store apps are at home on desktops, laptops, and slates. Design your apps to handle

all these different form factors gracefully. Remember that people move between different

devices, change the screen orientation, or shut everything off and on. Your Windows Store app

needs to move, change, and react with them.

Touch, mouse, and keyboard input

When you design your app for touch input and manipulation, you get support for mouse and

keyboard input for free. People can switch from one input method to another and not miss a

beat of the app experience. Plug a keyboard into a slate? No problem. Your app adapts to your

users' choices.

Device capabilities

Great apps take full advantage of the devices they run on. Windows 8 has built-in support for

these device capabilities:

 Accelerometers and other sensors Devices come with a number of sensors nowadays.

Your app can dim or brighten the display based on ambient light. It can also reflow the

UI if the user turns the display, or react to any physical movement. Learn more about

sensors.

 Geolocation Use geolocation information from standard web data or from geolocation

sensors. This data can help your users get around, locate their position on a map, or get

notices about nearby people, activities, and destinations. Learn more about geolocation.

 Cameras Connect your users to their built-in or plugged-in cameras. They can use the

cameras for chatting and conferencing, recording vlogs, taking profile pics, documenting

the world around them, or whatever activity your app is great at.

 Proximity gestures Let your users connect devices by physically tapping the devices

together. This can light up experiences where you expect multiple users to be physically

nearby (multiplayer games). Learn more about proximity gestures.

When planning your app's features, consider the devices your app might run on. Are some

device capabilities required for your app to work well? Or can you get by without some? You

declare which capabilities your app supports in your app manifest, but in the app itself, you can

create fallbacks for optional capabilities. For example, let's say a travel mapping app lets users

track their travels on a map, tag sites, include journal comments, send to social media, and add

photos or videos from their trip. Geolocation would be a mandatory capability, but camera

support could be optional. If the device doesn't have a camera, users could upload videos or

photos taken on another device. Great apps cover all the options.

INTRODUCTION

Design for form factors

© 2012 Microsoft. All rights reserved. | August 14, 2012

14

Fluid, multiple views of your app

Windows 8 puts users in charge. You want your app UI to shine on any device, in any

orientation, in whatever circumstance people decide to use it. When people change the

orientation of their monitor or mobile device, your app gracefully reflows in response. When you

design your app UI with fluid views, you get this behavior for free. Windows takes care of the

rest.

 Landscape Design for landscape view first so your app looks good on all form factors.

 Portrait But remember some devices rotate! So optimize the layout of your content

when in portrait view and retain functionality whenever possible.

The key to looking good in these views (as well as in snapped, fill, and fullscreen views) is

defining layouts for the app in each view. When you plan ahead for each view, your app UI

reflows pleasantly when a different view is triggered on the device.

Built-in graphical scaling

If people can access your app on multiple form factors, does that mean you have to design a

different UI for every potential screen size Windows works on? That's a lot of different screen

sizes! The answer is, not necessarily. Built-in scaling means your app and content always look

great, whether on a small 7" device or on a big 30" monitor. You just need to use a fluid layout

and make sure the graphics in your app look good when scaled.

Roaming data

What if people go from using your app on their work desktop to their slate at home? Their files,

app state, and app preferences go home with them. They can pick up right where they left off,

across different machines and user sessions.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

15

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

Learn how to organize the content in your Windows Store app so your users can navigate easily

and intuitively. Using the right navigation patterns helps you limit the controls that are

persistently on-screen, such as tabs. This navigation lets people focus on the current content.

Hierarchical system

Most Windows Store apps in Windows 8 use a hierarchical

system of navigation. This pattern is common and is familiar

to people, but it is made even better by the Hub navigation

pattern. This pattern makes Windows Store apps fast and

fluid while still being easy to use.

This pattern is best for apps with large content collections or

many distinct sections of content for a user to explore.

Layers in the hierarchy

The essence of Hub design is the separation of content into different sections and different

levels of detail.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

16

Hub pages

Hub pages are the user's entry point to the app. Here

content is displayed in a rich, horizontally panning view

that allows users to get a glimpse of what's new and

available.

The Hub consists of different categories of content, each

of which maps to the app's Section pages. Each Section

should bubble up content or functionality. The Hub should

offer plenty of visual variety, engage users, and draw them

in to different parts of the app.

Section pages

Section pages are the second level of an app. Here content

can be displayed in any form that best represents the

scenario and content the Section contains.

The Section page consists of individual items, each of

which has its own Detail page. Section pages can also take

advantage of grouping and a panorama style layout.

Detail pages

Detail pages are the third level of an app. Here the details

of individual items are displayed, the format of which vary

tremendously depending upon the particular type of

content.

The Detail page consists of item details or functionality.

Detail pages may contain a lot of information or may

contain a single object, such as a picture or video.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

17

Flat system

Many Windows Store apps in Windows 8 use a flat system of

navigation. This pattern is often seen in games, browsers, or

document creation apps, where the user moves between

pages, tabs, or modes that all reside at the same hierarchical

level.

This pattern is best when the core scenario involves fast

switching between a few pages or tabs.

Content pages

The essence of the Flat system is the separation of content into different pages.

Top app bar

The top app bar is great for switching between multiple

contexts. Examples include tabs, documents, and

messaging or game sessions.

This app bar is a transient element that resides at the top

of the screen, and is made visible when users swipe from

the top or bottom edge. While formatting of items in the

bar can vary, a typical treatment is the use of a simple

thumbnail.

Switching

Unlike the hierarchical system, there is typically no

persistent back button or navigation stack in the flat

system, so moving between pages is usually done through

direct links within the content or the top app bar.

You can choose to include other functionality within the

top app bar, such as adding a ‘+’ button to create a new

tab, page, or session.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

18

Navigation anatomy

The following show the anatomy navigating between sections in an app, between different

levels in the hierarchy, and within a single app page.

1. Header and Back button

The header labels the current page and is useful for way finding. The Back button makes

it fast to get back to where you were.

2. Hub page

The Hub page pulls information from different areas of the application onto one screen.

It gives the user a bird's-eye view of everything available in the app.

3. Content sections, or categories

Content sections can be formatted to best display the functionality or items they

promote.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

19

4. Semantic zoom: navigating between levels in a hierarchy

Semantic zoom makes scanning and moving around a view fast and fluid, especially

when the view is a long panning list.

5. Top app bar

The top app bar contains transient access to navigation controls or to other areas of the

app.

6. Header menu

The header menu is available from anywhere in the app, and allows users to jump quickly

from one section of the app to another.

7. Home link

The home link, at the bottom of the header menu, is a quick way to get back to the root

of the app.

8. Bottom app bar

The bottom app bar contains transient access to commands relevant to a particular view.

9. View/Sort/Filter

These commands change how content is displayed within a specific view. The best place

for them to reside is in the app bar.

10. Edge

Swiping from the edge of the screen is what makes the app bars and charms appear.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

20

Navigating with the edge swipe

Users can navigate within apps and throughout the system

by swiping a finger or thumb from an edge. In order to use

Windows Store apps efficiently, users learn what each of the

following edge swipes does:

 Swiping from the bottom or top edge of the screen

reveals the navigation and command bars.

 Swiping from the right edge of the screen reveals the

charms that expose system commands.

 Swiping from the left edge cycles through currently

running apps.

 Sliding from the top edge toward the bottom edge

of the screen closes the current app.

 Sliding from the top edge down and to the left or

right edge snaps the current app to that side of the

screen.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

21

Navigating with header menus and section labels

We will use a sample app called Food with Friends to illustrate a pattern for using the back

button, header menu, and content sections to navigate a Windows Store app.

The header menu contains a link to each section page

(level 2) as well as a link back to the hub (level 1). This

enables users to move around the app quickly. The menu

appears at each level and on every page of the app,

making it an efficient and reliable way for users to get

where they want to go.

Users can tap on the section label to drill in to

the corresponding page for that section.

Provide a visual cue, like View all (x), to

indicate to users that there are more items in

this section that what is shown in the hub.

Using this pattern avoids the need to use a tile

space or place a link within the content.

Using this pattern, this is what the navigation diagram would look like for the Food with Friends

example. This is a simplified diagram that shows only canonical examples of navigation

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

22

elements, as representatives of everything that's interactive.

Navigating with filters, pivots, sorts, and views

Another part of app navigation is determining when, where, and how to give users more control

over the way they experience content. Filters, pivots, sorts, and view switchers are all things to

consider in your app design.

Term Definition Example

Filter Removing or hiding content

within a data set, based on

some criteria.

When looking for a game to play, you might choose

to view only those games categorized as

"adventure."

Pivot Reorganizing content within a

data set, based on some criteria.

When looking at a music collection, you might

choose to organize songs by artist, album, or genre.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

23

Sort Changing the order in which

content is displayed within a

data set.

When browsing for an article to read in a news app,

you might choose to see the most recent articles

listed first.

View Changing the style or method in

which content is displayed.

When browsing for a place to eat in a restaurant-

finding app, you might choose to view restaurants

on a map instead of in a list.

On-canvas Use on-canvas controls for filtering, pivoting, or sorting when finding an item is a

primary task, like in a collection or search result page.

Controls should go into the app bar if the focus of the app is on browsing for content, as with a

magazine or shopping app.

Page filters and sorts For filtering and sorting content within a collection view, filter, and sort

commands can be placed in a row between the header and content. In the following example,

the view is filtered to show only TV episodes, sorted and grouped by series.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

24

In this example for a marketplace app, drop-down selection controls filter the content for the

current view. As the menus show, the currently active filter appears selected in the drop-down

list.

The top app bar

The top app bar is used primarily for navigating sections or pages of an app that use the Flat

navigation pattern. It can also be used along with the Hierarchical pattern, in lieu of the header

menu, as a means for providing global navigation controls. The top app bar should show up on

every page and at all levels of the app to provide users with a convenient, deterministic way of

navigating around.

In this finance app example, the hub (L1) promotes sections of the app (Headlines, Watchlist) to

the hub, and the section headers link in to them. At the section level (L2), when the top app bar

is invoked by swiping the top or bottom edge, the user has access to the root and all other

sections of the app.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

25

App bar view switching

The app bar is used primarily as a commanding surface, but it can also be used to alter how

content is being viewed. Switching views, pivoting, filtering and sorting can all be done by using

the app bar. Don't use the app bar for navigating from one place in the app to another. All app

bar items should act on the content currently in view.

In this calendar app example, the view defaults to a month view, which this app has optimized

for. Commands to choose other calendar views are in the app bar, accessed by swiping from the

top or bottom edge. Other commands, such as making a new appointment, may appear in the

bar as well.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

26

In the All Restaurants page of the Food with Friends example, options for viewing items as a list

or map are available, as are filtering and sorting the view based on certain criteria such as cost,

location, and rating. Here, filtering options are exposed as controls in a menu Flyout.

NAVIGATION, LAYOUTS, AND VIEWS

Navigation design

© 2012 Microsoft. All rights reserved. | August 14, 2012

27

Guidelines for navigation links

In a Windows Store app, you can use links to navigate to pages in your app or in your app’s web

context. You can also link to external pages outside of your app’s web context; these links

launch the browser.

When to use a link

Only use links for navigation, such as opening an external URL or switching to another page in

the same app. Don’t use links to perform actions other than navigating.

Dos and don'ts

Do Put a tooltip on every link. That way, if the user's finger covers the link, the user can

still see what the link does.

When navigating to an external site, put the domain name inside the tooltip and

style it with a secondary font color. Adding the domain name to the tooltip lets

people know that they're about to navigate to an external site so they aren’t surprised

when they click the link. Because the tooltip from "title" attribute doesn’t support

styling, use the Tooltip control instead. For Windows Store apps using JavaScript, use

the win-text-domain CSS class (provided by the Windows Library for JavaScript style

sheets) to style the domain portion of the URL.

It's enough to just show the top-level domain.

When the user doesn’t care whether he or she has visited a link, style the visited state

for that link so that the link always looks the same, whether or not the user has

clicked it. The default style for a visited link makes it look different than a link that

hasn't been visited. Sometimes the user doesn't care whether a link has been visited.

This is usually the case for links that are a part of your app's main navigation.

Don't

Don't make the link text too long. Keep the link text concise. If you want to provide

more information, put it inside the link's tooltip.

NAVIGATION, LAYOUTS, AND VIEWS

Page layout design

© 2012 Microsoft. All rights reserved. | August 14, 2012

28

Page layout design
You can use the grid-based layout pattern described here to lay out UI elements on your app

pages. Follow this consistent pattern for margins, page headers, gutter widths, and other such

elements. This pattern speeds your app design, maintains unity across apps, and helps people

easily understand interactions across the system.

The signature characteristic of this pattern is silhouette with a wide margin on the top, bottom,

and left edges. The wide margin helps users understand the horizontal panning direction of the

content.

What is the grid system?

The grid system is built into the developer templates, and we designed our controls and

collections with the grid system in mind. The grid is made up of units and subunits. The basic

unit of measurement is the unit. One unit equals 20 × 20 pixels. Each unit is further divided into

subunits of 5 × 5 pixels. There are 16 subunits per square unit. This image depicts the grid in the

upper-left corner of a screen. The image is enlarged to show pixels, subunits, and units.

The entire app page can be laid out using this grid as a foundation.

NAVIGATION, LAYOUTS, AND VIEWS

Page layout design

© 2012 Microsoft. All rights reserved. | August 14, 2012

29

App page header

In the grid system, the baseline of the app page header is 5 units, or 100 pixels from the top.

The left margin for the page header is 6 units, or 120 pixels. The typography is SegoeUI Stylistic

Set 20, lightweight.

NAVIGATION, LAYOUTS, AND VIEWS

Page layout design

© 2012 Microsoft. All rights reserved. | August 14, 2012

30

Content region

In the grid system, the content region has a top margin of 7 units, or 140 pixels. The left margin

is 6 units, or 120 pixels. The bottom margin is flexible. For horizontally panning content, it’s

between 2.5 units (50 pixels) and 6.5 units (130 pixels). For vertically panning content, the top

and left margins remain the same. There is no specified bottom margin because the content

scrolls off the screen.

NAVIGATION, LAYOUTS, AND VIEWS

Page layout design

© 2012 Microsoft. All rights reserved. | August 14, 2012

31

Horizontal padding

Horizontal padding between content items varies depending on the items. Hard-edged items

(like images and user tiles) are separated from accompanying text by 2 subunits, or 10 pixels, of

padding. Hard-edged items on their own have 2 subunits, or 10 pixels, of padding between

columns. Lists in columns are separated by 2 units or 40 pixels of padding.

NAVIGATION, LAYOUTS, AND VIEWS

Page layout design

© 2012 Microsoft. All rights reserved. | August 14, 2012

32

Vertical padding

Vertical padding between content items also varies depending on the types of items. Tile and

text lists have 1 unit, or 20 pixels of vertical padding between items in a row. Hard-edged

objects have 2 subunits, or 10 pixels, of padding between items in a row.

NAVIGATION, LAYOUTS, AND VIEWS

Page layout design

© 2012 Microsoft. All rights reserved. | August 14, 2012

33

Horizontal padding between groups

The padding between groups is 4 units, or 80 pixels. This extra padding helps people easily

distinguish one group from another, especially when panning across many groups.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

34

View state design
In Windows 8, a view is how the content of your UI adapts to how a user accesses and

manipulates a Windows Store app. An app that is designed to support multiple views works well

on devices of various sizes and orientations. It also lets users manipulate the content to fit their

needs.

View state

View state refers to the three ways a user can choose to display your Windows Store apps: snap,

fill, and full-screen as shown in the following images.

Full screen

App fills entire screen.

Snapped

App is snapped to a narrow region of the entire screen.

Fill

App fills remaining screen area not occupied by the app in the

snapped state.

Because users can work with up to two apps at a time, you should provide layouts that are fluid

and flexible enough to support all three states.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

35

When you plan for full screen, snap, and fill views, your app's UI will reflow smoothly and

gracefully to accommodate screen size, orientation, and user interactions.

Screen orientation

Users can rotate and flip their tablets, slates, and monitors, so ensure that your app can handle

both landscape and portrait orientations.

User interactions

Great apps help users do what they want with the content in the UI.

When you design your app, you should consider which regions of the UI should support

panning and scrolling, optical and semantic zooming, and object resizing.

Create views that let users resize and zoom in on the content of your app.

Let the UI surface overflow the screen area onto more "pages" if necessary. In these cases,

enable panning and scrolling to let users explore these large UI surfaces and discover the

content on the additional pages.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

36

Guidelines for views

These guidelines can help you build apps that provide an elegant experience across form

factors, display sizes, and view states through consistent and predictable management of the

user interface.

Follow these guidelines is designing your layout:

Do

 Use fluid layouts.

 Use media queries to identify the view state and resolution being targeted.

 Use layout features to adapt to display size.

 Use controls that are designed for fluid layout, like ListView.

 Consider vector-based UI (SVG, XAML) for application resources.

Don't

 Use static layouts.

 Use absolute positioning because it constrains your UI from responding to changes in

view state and orientation.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

37

You have two options for managing layout: static and fluid. Fluid layouts shrink, grow, or reflow

to adapt to the visual space available on a device while static views do not. We recommend your

use fluid layouts.

Avoid static layouts Static layouts can become stretched, shrunk, or clipped across different

form factors and display sizes, as shown in these images.

Use fluid layouts Fluid Views encompass three primary layout concepts: layout management,

grids, and flexible controls.

Layout management involves modifying the layout and visibility of UI elements for different

views. Your best choice is to use CSS3 media queries to discover properties of the display

device, such as screen dimensions and orientation. That way you can specify a layout that best

suits the constraints of the display.

Layout management is most useful for applying coarse metrics to the UI. Grid layouts and

spacing are used to provide another level of UI flexibility.

Guidelines for scaling to pixel density

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

38

Windows scales applications to ensure consistent physical sizes for UI elements regardless of the

pixel density of the screen.

Without scaling, as the pixel density of a display device increases, the physical sizes of objects

on screen get smaller. When UI would otherwise be too small to touch and when text gets too

small to read, Windows scales the system and app UI to a percentage:

 100% when no scaling is applied

 140% for 1920 x 1080 devices that have a minimum DPI of 174

 180% for 2560 x 1440 devices that have a minimum DPI of 240

Note For the Logo and WideLogo images specified in the manifest, you can specify an

additional 80% scale percentage. For best results, provide all four scales of these images.

You don't have to do anything to get scaling for your app, but you do need to follow these

guidelines to ensure that your app looks great when scaled.

Do Use scalable vector graphics Use SVG for JavaScript apps and XAML for C#/C++/VB apps.

Windows scales these formats for you automatically, without noticeable artifacts.

Use resource loading for bitmap images in the app package For bitmap images stored in

the app package, provide a separate image for each scale (100%, 140%, and 180%), and

name your image files by using the "scale" naming convention. Windows loads the right

image for the current scale automatically.

Save multiple versions of the image by using a file name or folder naming convention.

Option #1 - File naming convention:

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

39

...\test.scale-100.jpg

 \test.scale-140.jpg

 \test.scale-180.jpg

Option #2 - Folder naming convention:

...\scale-100\test.jpg

 \scale-140\test.jpg

 \scale-180\test.jpg

In markup, specify images without using the naming convention.

HTML

XAML

<Image Grid.Row="0" Grid.Column="1" x:Name="testImage" Source="test.jpg"

Margin="2,2,2,2"/>

Use the resolution media query for remote web images If your application is a JavaScript

app and you have a remote web image, use the CSS @media min-resolution media query

with a background-image to replace images at runtime.

For a Windows Store apps using C++, C#, or Visual Basic that uses remote web images, you

need to query the DisplayProperties.ResolutionScale property to determine which remote

web image to load.

Use the file access thumbnail APIs for user images on the file system If your app loads

user images from the file system, these APIs automatically retrieves thumbnails

corresponding to the current scale.

Manually load images based upon scale percentage at runtime If your app

programmatically loads images at runtime, use the Windows Runtime APIs to determine the

scale and manually load images based upon scale percentage.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

40

Specify width and height for your images If you know the scale, specify a width and

height on images, instead of using auto sizing, to prevent layouts from changing when larger

images are loaded.

Use grid-units and sub-units Where possible, use the grid-defined sizes of 20px for major

grid-units and 5px for minor grid-units. These sizes ensure that layouts aren’t affected by

pixel shifting due to pixel rounding. Any sized unit that is divisible by 5px does not

experience pixel rounding.

You should avoid the following.

Don't Don't use smaller images that are scaled up Because images are scaled by default,

images look blurry at 140% scale on HD slates if only 100% scale images are available. You

should ensure that your images look great on the higher 140% scale by using the scaling

guidance.

Don’t use larger images that are scaled down Larger images that are scaled down show

scaling artifacts and jagged edges on standard slates. Photographs are the only exception

as they can look good when scaled down. You should ensure that your images look great

on the 100% scale using the above guidance.

Avoid specifying sizes that aren't multiples of 5px Units that aren't multiples of 5px

can experience pixel shifting when scaled to 140% and 180%.

Guidelines for scaling to screens

Windows 8 runs on a variety of screen sizes, from a small screen on a tablet, to a medium laptop

screen all the way up to a large desktop or all-in-one screen. Windows Store apps can run on

any of the screen sizes that Windows 8 supports. In general, larger screen sizes also have higher

screen resolutions. The result is that on these larger screens there is more viewable area for your

app to take advantage of.

The following terms are used in this document.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

41

Screen size
The physical size of the screen, in inches. The size is usually measured on

the diagonal.

Screen resolution
The number of pixels the screen supports, in horizontal and vertical

dimensions. For example, 1366x768.

Aspect ratio
The shape of the screen as a proportion of width to height. For example,

16:9.

Screen size

The biggest impact that screen size has on Windows Store apps is actually the screen resolution.

On larger screens, there is a higher screen resolution, and therefore more available space or

screen real-estate for your application. Users expect to see more content and more functionality

on larger screens.

Managing this screen real estate takes consideration by the app developer and designer. The

parameters that you define for the layout at design and development time determine how the

app looks on large screens.

The platform, controls, and templates have all been designed to accommodate different screen

sizes. Although much of your app's layout scales with little additional effort or code, you must

give some consideration to your top-level layout, content regions, app navigation, and

commands. This ensures that they are placed predictably and intuitively on larger screens.

The following image demonstrates the large empty regions caused by not building an adaptable

layout for large screens.

Minimum screen resolutions

There are two primary screen resolutions that your app should support:

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

42

 The minimum resolution for Windows Store apps is 1024x768.

 The minimum resolution required to support all the features of Windows 8 (including

multitasking with snap) is 1366x768.

The following image presents all screen resolutions that can support Windows 8 applications.

The vertical column represents the percentage of Windows 8 apps that are supported at the

resolution.

The following table presents the practices recommended for the primary screen resolutions.

Design for: To ensure that:

A minimum resolution of

1024x768.

All of your UI (such as, navigation, controls, and content) fits on the

screen without clipping.

An optimal resolution of

1366x768

All of your UI (such as navigation, controls, and content) fits on the

screen without blank regions.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

43

Designing for larger screens

When designing an app for larger screens, consider how your app’s layout, aesthetic,

proportions, and controls can be applied to a larger canvas. Additionally, any app can have any

number of layouts of varying complexity. Each layout can be considered individually for larger

screens.

Fill the screen with

content

This provides a user experience that is as immersive as possible regardless

of the screen size.

Apps should appear to fill the screen to the best of their ability and

should appear to be thoughtfully designed for varying screen sizes. Users

who buy larger monitors expect that their apps continue to look great on

those large screens and fill the screen with more content, where possible.

Determine whether

your layout should

be fixed or adaptive

There are two techniques that can be used to build an app that scales to

different screen sizes. The choice depends on the complexity of the layout

and the usage scenarios.

Fixed layout

A fixed layout is most often seen in games or game-like apps that are composed primarily of

bitmap images. These types of layouts have a fixed amount of content (for example, a game

board) where showing more content is not possible or may not add any value. These layouts

cannot, or will not, dynamically change or adapt to different screen sizes because they are

designed with fixed pixel values. Windows 8 accommodates these apps with a "scale to fit"

approach that is built into the platform.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

44

Fixed layout: Scale to Fit

If you determine that your app requires a fixed layout that can’t adapt to different screen sizes,

you can use a scale-to-fit approach. This makes your fixed layout fill the screen on different

screen sizes, as shown in the following image.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

45

The following table presents the practices recommended for apps that use scale-to-fit

functionality.

You should: Description

Start with the base

resolutions.

When designing a fixed layout, start by designing your layout for the

baseline resolutions: 1024x768 and 1366x768. This is the layout that

Windows 8 scales to the larger screens.

Place your fixed

content within a

ViewBox control.

The ViewBox control scales a fixed layout to fit the screen.

 Ensure that the ViewBox control is sized to 100% width and

height.

 Define the fixed size properties of the ViewBox to the fixed

pixel sizes of your layout (for example, 1366x768).

Avoid putting adaptive

controls (such as an

app bar) in the

ViewBox.

These controls automatically adapt to different screen sizes.

Define letterboxing

style and color.

Fixed app layouts do not dynamically change in response to aspect

ratio or screen size changes. So, the scale-to-fit technique

automatically centers and letterboxes (horizontally, or vertically) your

app’s content.

Defining a letterboxing style and color that complements the app or

hardware color can provide a great experience. Letterboxing color is

defined by your top-level app layout’s background color. We

recommend choosing a dark color like black that blends in with the

hardware, a neutral color like grey that looks intentional, or a color that

matches your app content color.

Provide vector or high-

resolution assets.

The scale-to-fit technique scales your application to varying sizes up to

200% of the design size for your app on a large desktop monitor.

Vector assets like Scalable Vector Graphics (SVG), XAMLExtensible

Application Markup Language (XAML), or design primitives scale

without scaling artifacts or blurriness. If raster assets (such as bitmap

images) are required, provide images that are twice as large as the

design size so they can be scaled down instead of scaled up.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

46

The following images demonstrate how scalar images (right) degrade

when scaled up in size compared to vector images (left).

Adaptive layout

Adaptive layouts are most often seen in content consumption, management, and creation apps.

These layouts are most often made up of defined proportional elements with a top-level

wireframe. For example, a news reader app has a header, footer, and a content region in the

center. These layouts dynamically change and adapt to different screen sizes and bring in more

content and dynamically fill the space according to the rules of the layout. Windows 8

accommodates these apps with adaptive layout techniques discussed here in more depth.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

47

Adaptive layout: manage the space

If you determine that your app layout can support adaptive layout to accommodate different

screen sizes, use the following considerations to determine how your app can use all available

screen space.

The following table presents the practices recommended for apps that use adaptive layout.

Practice Description

Determine how each

adaptive region can

use the available

space.

For each cell that you’ve identified as being adaptive in the

horizontal or vertical direction, determine how your app layout

uses that space on a larger screen.

Determine the top-

level layout wireframe.

This wireframe should describe what the top-level regions of your

app are. This wireframe should include where your header,

navigation, and content regions are. The following image

demonstrates a top-level wireframe.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

48

Determine which parts

of the layout are fixed

vs. adaptive.

For each cell in your top-level wireframe, determine how each cell

should size itself for both the vertical and horizontal dimension

when your app is shown at different sizes. This top-level wireframe

description and the sizing behavior can be used to define the

parameters for a GridLayout.

Determine in which

dimensions each

adaptive region will

adapt.

For each cell that you’ve identified as being adaptive in the

horizontal or vertical direction, determine how your app layout

uses that space on larger screens.

Determine how your

app uses space in

adaptive dimensions.

After you’ve determined how each region of your app with adapts

to different sizes, the next step is to consider how your app uses

the space. There are many techniques that your app can use and

combine to use the space. The Windows 8 platform and controls

support all of them.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

49

Ensure the width and

height of all collection

views are sized to

100%.

A ListView control automatically fills available space with more

items.

Use Multi-column

Layout for text, where

appropriate.

Multi-column Layout automatically adds columns for readability

and flows content to fill available space.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

50

Use a canvas for

images, where

appropriate.

A canvas automatically expands to fill available space.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

51

Show more

whitespace.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

52

Show more app.

Testing your app layout

It’s important to test apps on different screen sizes. We realize that most people don’t have

many devices at their disposal, so we built support for testing apps on different screens into

tools such as Visual Studio 2012. The Windows Simulator lets you run your apps on a variety of

screen sizes, orientations, and pixel densities, as shown in the following image.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

53

You can use the platform menu in Blend for Microsoft Visual Studio 2012, shown in the next

image, to design your app on different screen sizes and pixel densities. The Blend canvas

updates dynamically based upon the screen option chosen from the platform menu.

Guidelines for snapped and fill views

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

54

Because people can snap every app, design your app for the snapped view state. If you don't,

the system resizes your app anyway and might crop your content or add scrollbars.

Note Snapped and fill views are only available on displays with a horizontal resolution of 1366

relative pixels or greater.

Here are some general principles you should follow:

 Maintain state and preserve continuity. Maintain the state in the snapped view, even if

it means showing less content or reducing functionality. Prioritize maintaining state over

showing the user a more attractive, but otherwise out-of-context, snapped page.

 Have feature parity across states. Remember that snapping is simply resizing your app.

The user expects to be able to interact with your app when it is snapped. If you can't

keep parity for a specific feature, we recommend that you include an entry point to the

feature and programmatically unsnap the app when the user triggers that entry point.

 Use media queries for your layout logic. This allows your application to respond

appropriately when your application layout changes.

 Use application view API. This ensures your app is notified of layout changes, especially

during app launch and relaunch from a suspended state.

 Put the user in control. Don't programmatically unsnap your app to get the user's

attention. Unsnapping should be used when the user tries to use a feature that is not

available in the snapped state. If your app has snapped views for all pages in the app,

you shouldn't need to programmatically unsnap at all.

 Don't add UI controls to programmatically unsnap your app. The splitter between

the apps is always present and lets the user unsnap whenever they want to.

Remember, the snapped app is your app resized! It is not a gadget or a minimized window. You

want to maintain state, context, and interactivity for your users. Snapping and unsnapping

should never destroy the user's work or state.

When should you use media queries and when should you use JavaScript layout change events?

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

55

Use: To drive:

Media queries Changes in layout and manipulation of properties specified through CSS

styles:

 Element size

 Element layout (inline, block)

 Visibility of various elements

JavaScript events Changes in behavior and manipulation of properties that cannot be

specified through CSS styles:

 Scroll direction of the ListView control

 Control changes, such as going from a list of buttons to a single

drop-down select control

Snapped layouts

Panning direction Take advantage of the snapped layout's "tall and skinny" aspect ratio to pan

vertically. If your app changes its panning direction between snapped and fullscreen or fill states,

make it clear in the UI that the panning direction has changed.

Column layouts Given the narrow width of the snapped state, we recommended that you

change multi-column layouts to a single column layout when the app is snapped. The following

example has a multi-column layout in its unsnapped state. When the app is snapped, elements

of the layout are stacked to create a single column layout.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

56

View State and Window Dimensions

Depending on the needs of your app, you can base your app's UI layout on view states, the

app's window dimensions, a combination of view states and window dimensions, or neither.

View states give you high-level information about the "shape" of the app and context around

the app. Window dimensions give you finer control over the layout of UI elements, which is

useful if specific widths and heights matter for how elements are laid out.

Whether you use view states or window dimensions depends on how your app "treats" its

content, as described in the following sections:

Completely fluid content The app content flows off the screen horizontally, adding more rows

if there is sufficient height.

For fluid content, the width of the screen and the window dimensions don’t matter for layout

purposes. However, you might need the view state to determine whether the app is snapped so

you can convert content for vertical panning.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

57

Shape dependent The app lays out UI elements based on the "shape" of the app, regardless of

its exact dimensions. For example, the app might stack UI elements when the app is taller than it

is wide. The view state gives sufficient information for this scenario.

Exact dimensions matter The app has optional UI that appears only when there is sufficient

space. For example, a social networking site might show a real-time news feed only when there

is enough width.

When exact dimensions matter, the view state alone doesn’t give enough information to

determine whether to show the optional UI. There might be a filled state that is wide enough to

show the optional UI, or a full screen state that is not wide enough. In cases like these where

exact widths matter, use window dimensions to lay out your app.

Full screen matters The app needs to know whether it has all of the pixels on the device screen.

For example, a game might place controls at the sides when it is full screen, and reposition them

at the bottom when not full screen.

Window dimensions don’t tell you whether your app is full screen. You’ll need to get the filled

view state to determine how to position controls.

NAVIGATION, LAYOUTS, AND VIEWS

View state design

© 2012 Microsoft. All rights reserved. | August 14, 2012

58

Guidelines for resizing

These guidelines explain how to ensure that your app looks great when Windows needs to

resize it. Windows automatically resizes your app when, for example, people call up the soft

keyboard.

 Use the default behavior. To reduce the development effort on your part, let Windows

handle the resize and reflow of content whenever possible.

 Use custom handling. If the default behavior is inadequate, you can implement custom

handling. For example, let's say you have an email app and you want to ensure a good

user experience when Windows resizes the app when users are typing a new message

with the soft keyboard. You can customize the resize of the input field to take up the

entire viewable area, allowing users to see the maximum amount of their message as

they create it. Such behavior is not automatically performed by Windows.

 Specify a minimum size for all input fields. This ensures that the input fields do not

disappear when the windows are resized.

 Test your application's resize behavior thoroughly. In particular, test that the soft

keyboard doesn’t cover your app's input fields.

 Do NOT perform custom handling if the resulting layout is identical to what Windows

would have provided.

NAVIGATION, LAYOUTS, AND VIEWS

Branding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

59

Branding design
A brand defines the qualities that a business wants to be known for. When designing your

Windows Store apps, make thoughtful decisions to ensure that your apps incorporate the

essence of your brand.

Visual elements of your brand guideline

Every brand, whether it's new or well-known, conforms to a brand guideline. Think of the brand

guideline as a toolbox of visual elements with rules for applying them. A distinctive color palette,

graphics, layout, and photography style all work together to create a repeatable and

recognizable brand. The branding will be recognizable in broadcast, print media, or a Windows

Store app.

You use a number of visual elements to design your brand. Think of these visual elements as the

knobs and dials that you manipulate through code to create a unique look and feel in your

Windows Store app.

Colors Color is one of the key attributes of any brand. Apply the primary color

associated with your brand in ways that remind customers that this app comes

from your business.

 Be selective in how color is used throughout your app. A carefully

chosen color palette makes a simple, clean, and brand-appropriate

presentation of content.

 Secondary colors should complement your brand's primary color.

 To ensure legibility, choose colors that maintain a 4.5:1 contrast ratio,

when applied to typography.

Icons Windows Store apps leave behind the "icons represent everything everywhere"

approach to UI design.

 Icons in Windows Store apps are an important part of navigating a

touch-first system. Think of icons as touch targets.

 Icons aren't bullet points, embellishments, or detailed illustrations.

 Icons are graphic in nature, flat in perspective, and monochromatic. This

approach reinforces the principle of "content over chrome."

Images As most brands have a distinct color palette, they also use a unique set or style

NAVIGATION, LAYOUTS, AND VIEWS

Branding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

60

of images. The images in your Windows Store apps must speak to your brand.

 Images should communicate what products and services your business

is about.

 Images can be staged or modified to capture the emotions, feelings, and

memories associated with your brand.

 Images can range from hand-drawn art to studio-quality photography.

Grid The grid system is a design tool that helps achieve visual unity across different

apps and features while providing a structure for variation and maintaining user

interest.

 Adhere to the grid system. This helps align the UX of your apps with the

rest of Windows.

 The grid is the underlying, and somewhat invisible, blueprint for how the

visual elements of your Windows Store app will all come together.

Layout A layout is the arrangement of visual elements on an app page.

 Your brand needs to shine through in both portrait and landscape

orientations and in all three view states: full screen, snapped, and fill.

Logo Use a logo as a means to facilitate quick identification and public recognition.

 Your logo helps customers locate your app in the Windows Store and on

the Start screen.

 Your logo is an anchor point throughout your app's user experience.

Typography Well-crafted typefaces are a key part of Windows Store apps.

 If typography is not an important part of your visual brand, then benefit

from the capabilities, grace, and clarity of Segoe, or the alternate

typeface, Cambria.

 If typography is important, you can also use your own distinctive

typefaces.

NAVIGATION, LAYOUTS, AND VIEWS

Branding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

61

Examples that evoke unique brands

Here are some examples that show how each visual element helps to evoke different emotions

and feelings. Descriptions for each visual element provide specific details about how the layout

was created, and why it's important for leveraging the new Windows 8 UI style.

Contoso French Bakery brand

The Contoso French Bakery brand is known as the destination people seek out to satisfy their

sweet tooth and guilty pleasures. Since there are only a few Contoso French Bakeries in the area,

every visit is memorable, and every customer is more than happy to place the diet on hold. This

brand is not about Mom’s home-baked goods or sugary treats for the kids. The Contoso French

Bakery brand is indulgent, heavenly, and perhaps even a bit devilish.

 Colors A palette of just two colors - brown and pink - is enough to make customers think

of a bakery. Both colors are used in a purposeful way. Brown is the primary color, rich but

neutral enough to let full-color photography to stand out, and pink is the accent color that

pulls the eye in without being too contrasty or distracting.

 Icons Small, pink flag icons call attention to certain content. Icons aren't used for layout or

commanding.

 Images Photographs of bakery items are the focus of this design. Images are used

pragmatically to categorize the content and subtly reinforce the decadent side of the brand.

 Grid The standard grid is used throughout this design. For example, the logo is top-left

aligned and margins are maintained. The design suggests a specific brand without

compromising the new Windows 8 UI silhouette.

 Layout Compared to some Windows Store app designs, this example has a different feel.

The most unique difference is the absence of square tiles. The tiles and grid still exist, but

the images have been stylized. They mimic the items that are likely to be found in a bakery,

for example, the circular and scalloped shapes of a cupcake tin.

 Logo The logo serves two purposes. First, it identifies the business and labels the app.

Second, it serves as an anchor point by denoting the top and left margins of the app.

Simple alignment details like this help to frame your app's content.

NAVIGATION, LAYOUTS, AND VIEWS

Branding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

62

 Typography Cambria, a serif font, feels more personal and less technical than a sans serif

font. Cambria is the only typeface used throughout the app, which reinforces an open, clean

layout. Also, the typeface is applied with restraint, which results in a look and feel that

avoids being over stylized or busy.

Contoso Sandwich Truck brand

The Contoso Sandwich Truck brand is known for being an inviting place to meet with friends

and family. The hand-crafted entrees and specialty drinks make Contoso Sandwich Truck more

than a great place for regulars. It's a popular destination for out-of-town guests. This brand is

not about being a tourist hot spot. It's one of the city's original food trucks. This brand is

authentic.

 Colors Warm dark gray, off-white, and copper colors give this design a rich feel. The warm

palette evokes some of the same colors you'd find in a homemade bread crust, soup, or

pastry.

 Icons No icons are used in the design, because they're not needed. If icons were added,

they'd appear as nothing more than ornamentation. Instead, typography does the heavy-

lifting when it comes to presenting content in a clear way.

 Images No images are used in the design. Images could be used to accompany the text,

but this layout relies entirely on typography to communicate the products offered and the

brand itself.

 Grid If not for the grid, the typography would feel as if it were floating haphazardly on the

page. In this example, content intentionally "breaks" the grid. The top margin is reduced to

provide more room for menu content. The left margin has been adjusted so the company

name, intro text, and location information feel more centered, giving the content room to

breathe.

 Layout The design is intended to feel like a menu. Like the sandwiches and other menu

items, the layout is intended to feel more handcrafted than the other examples that appear

here.

NAVIGATION, LAYOUTS, AND VIEWS

Branding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

63

 Logo A company logo isn't used in this example. The company name appears where the

logo would, in text. The company name in text is the logotype. A logotype is a mark made

of words, not a graphic or symbol, that's used to identify a company or event.

 Typography Copperplate Gothic Bold is the primary typeface used in this design. It gives

the company name its look and feel. Script MT Bold and Segoe UI are the accompanying

typefaces. The script font is used sparingly in the menu header. Segoe UI is used as the

body text.

Alternate Contoso Sandwich Truck brand

This is an alternative to the design of the Contoso Sandwich Truck brand. It's a brand known for

cooking up great street food and being available almost everywhere. This brand is backed-up by

a crew of excellent chefs and a fleet of trucks. They are all geared toward people on the go, like

people downtown during the weekdays, and crowds at weekend festivals. This brand is not

about fast food or fine dining. The Contoso Food Trucks brand is urban, social, and location-

aware.

 Colors Full-color photography adds an array of colors to the app. To avoid competition

between the color palette and the photography, black and yellow are used as accent colors.

From a personality perspective, the black and yellow are also colors found in urban settings,

such as street signs, and road markings.

 Icons Icons appear only in star shapes, which indicate a customer rating system. Menu

choices remain the focus and aren't cluttered by an excessive use of icons.

 Images For this business to get customers to visit them, enticing and persuasive images of

the product are critical. All of the food photography is professionally staged. This makes it

possible to showcase close-up images in the app.

 Grid The standard grid anchors all aspects of this design. Even though a company logo

isn't used, the company name appears near the top-left and is aligned with the left margin.

 Layout The organization of content has the same structure that you'd see in an overhead

view of a city street map. To challenge this structure, full-bleed and overlapping content

NAVIGATION, LAYOUTS, AND VIEWS

Branding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

64

sets this example apart. The overall presentation of content is bold and direct, based on the

need to appeal to people who are on the go and need to make quick decisions.

 Logo A company logo is not used in this example. The company name appears where the

logo would, and in text. One could argue the company name in text is the logotype. A

logotype is a mark made of words, and not a graphic or symbol, used to identify a company

or event.

 Typography Trebuchet is a sans serif font, and it feels clean and technical. It's not difficult

to imagine this typeface appearing on municipal properties and signage. Only three point

sizes are used, and only two colors, which minimizes the visual noise. Full-color

photography is the focus, followed by the text box shapes, which add personality.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

65

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

1. Use the Windows 8 touch language.

Windows 8 provides a concise set of touch interactions used consistently throughout the

system. Applying this language consistently makes your app feel familiar to what users

already know. This increases user confidence by making your app easier to learn and use.

2. Use fingers for what they're good at.

A mouse and pen are precise, while fingers aren't, and small targets require precision.

Use large targets that support direct manipulation and provide rich touch interaction

data. Swiping down on a large item is quick and easy because the entire item is a target

for selection.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

66

3. Browse content with touch.

Semantic Zoom and panning make navigation fast and fluid. Instead of putting content

in multiple tabs or pages, use large canvases that support panning and Semantic Zoom.

4. Provide feedback.

Increase user confidence by providing immediate visual feedback whenever the screen is

touched. Interactive elements should react by changing color, changing size, or by

moving. Items that are not interactive should show system touch visuals only when the

screen is touched.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

67

5. Content follows finger.

Elements that a user can move or drag, such as a canvas or a slider, should follow the

user's finger when moving. Buttons and other elements that do not move should return

to their default state when the user slides or lifts their finger off the element.

6. Keep interactions reversible.

If you pick up a book, you can put it back down where you found it. Touch interactions

should behave in a similar way—they should be reversible. Provide visual feedback to

indicate what will happen when the user lifts their finger. This will make your app safe to

explore using touch.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

68

7. Allow any number of fingers.

People often touch with more than one finger and don’t even realize it. That's why touch

interactions shouldn’t change radically based on the number of fingers that are touching

the screen. Just like the real world, sliding something with one or three fingers shouldn't

make a difference.

8. Keep interactions untimed.

Interactions that require compound gestures, such as double tap or press and hold, need

to be performed within a certain amount of time. Avoid timed interactions like these

because they are often triggered accidentally and are difficult to time correctly.

Windows 8 touch language

This list describes the standard touch-related terms used in Windows 8.

Important To avoid confusing users, do not create custom interactions that duplicate or

redefine existing, standard interactions.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

69

Press and

hold to learn

This touch interaction causes detailed

information or teaching visuals (for

example, a tooltip or context menu) to be

displayed without a commitment to an

action. Anything displayed this way

should not prevent users from panning if

they begin sliding their finger.

Tap for

primary

action

Tapping on an element invokes its

primary action, for instance launching an

app or executing a command.

Slide to pan Slide is used primarily for panning

interactions but can also be used for

moving, drawing, or writing. Slide can

also be used to target small, densely

packed elements by scrubbing (sliding

the finger over related objects such as

radio buttons).

Swipe to

select,

command,

and move

Sliding the finger a short distance,

perpendicular to the panning direction,

ListViewselects objects in a list or grid (

GridLayoutand controls). Display the

app bar with relevant commands when
objects are selected.

Pinch and

stretch to

zoom

While the pinch and stretch gestures are

commonly used for resizing, they also

enable jumping to the beginning, end, or

anywhere within the content with

Semantic Zoom. A SemanticZoom

control provides a zoomed out view for

showing groups of items and quick ways

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

70

to dive back into them.

Turn to

rotate

Rotating with two or more fingers causes

an object to rotate. Rotate the device

itself to rotate the entire screen.

Swipe from

edge for app

commands

App commands are revealed by swiping

from the bottom or top edge of the

screen. Use the app bar to display app

commands.

Swipe from

edge for

system

commands

Swiping from the right edge of the screen

charmsreveals the that expose system
commands.

Swiping from the left edge cycles

through currently running apps.

Sliding from the top edge toward the

bottom edge of the screen closes the

current app.

Sliding from the top edge down and to

the left or right edge snaps the current

app to that side of the screen.

Note Users can perform direct manipulations like the slide-to-pan, pinch-to-zoom, and turn-to-

rotate interactions simultaneously and with any number of touch points.

Windows 8 Touch posture

Designing for touch is more than designing what’s displayed on the screen. It also requires

designing for how the device will be held (grip).

Typically, different people have a few favorite grips when holding a tablet.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

71

The current task and how it’s presented usually determines which grip is used. However, the

immediate environment and physical comfort also affect how long a grip is used and how often

it’s changed.

Try optimizing your app for different kinds of grips. But if an interaction naturally lends itself to a

specific grip, optimize for that.

Interaction areas: Because slates are most often held along the side, the bottom corners and

sides are ideal locations for interactive elements.

Reading areas: Content in the top half of the screen is easier to see than content in the bottom

half, which is often blocked by the hands or ignored.

Four most common grips: While there are many ways to hold a tablet, these four grips are

most commonly used.

Grip Grip and interaction Design considerations

One hand holding, one hand

interacting with light to

medium interaction

 Right or bottom edges

offer quick interaction.

 Lower right corner might

be occluded by hand and

wrist.

 Limited reaching makes

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

72

touching more accurate.

 Reading, browsing, email,

and light typing.

Two hands holding, thumbs

interacting with light to

medium interaction

 Lower left and right corners

offer quick interaction.

 Anchored thumbs increase

touching accuracy.

 Anything in the middle of

the screen is difficult to

reach.

 Touching middle of screen

requires changing posture.

 Reading, browsing, light

typing, gaming.

Device rests on table or legs,

two hands interacting with

light to heavy interaction

 Bottom of the screen offers

quick interaction.

 Lower corners might be

covered by hands and

wrists.

 Reduced need for reaching

makes touching more

accurate.

 Reading, browsing, email,

heavy typing.

Device rests on table or stand,

with or without interaction

 Bottom of screen offers

quick interaction.

 Touching top of the screen

occludes content.

 Touching top of screen

might knock a docked

device off balance.

 Interaction at a distance

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

73

reduces readability and

accuracy.

 Increase target size to

improve readability and

precision.

 Watching a movie, listening

to music.

Windows 8 Touch targets

Size vs. efficiency: Target size influences error rate

There's no perfect size for touch targets. Different sizes work for different situations. Actions

with severe consequences (such as delete and close) or frequently used actions should use large

touch targets. Infrequently used actions with minor consequences can use small targets.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

74

Fat fingers?

People often blame themselves for having "fat fingers."

But even baby fingers are wider than most touch

targets.

The image on the left shows that the width of the

average adult finger is about 11 millimeters (mm) wide,

while a baby's is 8 mm, and some basketball players

have fingers wider than 19 mm!

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

75

Target size guidelines: Here are some guidelines for deciding how large or small to make your

touch targets.

7x7 mm: Recommended minimum size

7x7 mm is a good minimum size if touching the

wrong target can be corrected in one or two

gestures or within five seconds. Padding between

targets is just as important as target size.

When accuracy matters

Close, delete, and other actions with severe

consequences can’t afford accidental taps. Use 9x9

mm targets if touching the wrong target requires

more than two gestures, five seconds, or a major

context change to correct.

When it just doesn’t fit

If you find yourself cramming things to fit, it’s okay

to use 5x5 mm targets as long as touching the

wrong target can be corrected with one gesture.

Using 2 mm of padding between targets is extremely

important in this case.

Most people are right handed

Most people hold a slate with their left hand and touch it with their right. In general, elements

placed on the right side are easier to touch, and putting them on the right prevents occlusion of

the main area of the screen.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

76

Guidelines for touch input

How you design your user interface can influence how easy your app is to use with touch input.

To ensure that your app is touch optimized, follow these guidelines:

 Be sure to accommodate the size difference between mouse pointers and fingertips.

Touch requires larger UI elements to ensure accuracy and to prevent fingers from

obscuring important information.

 Always provide immediate, direct visual feedback for touch interactions. For example,

you can use highlighting or tool tips to indicate the current touch target and prevent the

accidental activation of other targets.

 Use physics effects such as acceleration and inertia to provide a natural feel in

interactions such as panning.

 Use snap points and other constraints to help guide people to the most useful states.

Guidelines for cross-slide

Cross-slide is the touch-optimized technique used by Windows Store apps in Windows 8 for

selecting or dragging-and-dropping an item within a content area that is pannable in one

dimension (vertical or horizontal).

Both the slide and swipe gestures use cross-slide functionality to manipulate an item by moving

it some distance and, based on a distance threshold, provide the selection or drag-and-drop

interaction. The gesture must be performed in a direction perpendicular to the panning

direction.

When to use cross-slide

Use cross-slide to let people select an item or drag-and-drop an item, if a distance threshold is

crossed, using a slide or swipe gesture perpendicular to the single panning direction of a

content area.

The following diagram demonstrates both selecting and moving an object by using cross-slide.

The image on the left shows how an item is selected if a swipe gesture does not cross a distance

threshold before the contact is lifted and the object released. The image on the right shows how

a sliding gesture crosses a distance threshold and results in movement of the object.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

77

The threshold distances used by the cross-slide interaction are shown in the following diagram.

To preserve scrolling functionality, a small threshold of 2.7mm (approximately 10 pixels at target

resolution) must be crossed before either a select or drag-and-drop interaction is activated. This

small threshold helps the system to differentiate cross-sliding from panning, and also helps

ensure that a tap gesture is distinguished from both cross-sliding and panning. The following

diagram illustrates this technique.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

78

This diagram illustrates how a user intends to scroll horizontally, but moves their finger down

slightly at touch down. With no threshold, the interaction would be interpreted as a cross-

slide because of the initial vertical movement. With the threshold, the movement is

interpreted correctly as horizontal panning.

We strongly recommend cross-slide for lists or collections that scroll in a single direction.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

79

A horizontally panning two-dimensional list. Drag

vertically to select or move an item.

A vertically panning one-dimensional list. Drag

horizontally to select or move an item.

In cases where the content area can be panned in two directions, such as web browsers or e-

readers, use the press-and-hold timed interaction to invoke the context menu .

Selecting

Selection is the marking, without launching or activating, of one or more objects. This action is

analogous to a single mouse click, or Shift key and mouse click, on one or more objects.

Cross-slide selection is achieved by touching an element and releasing it after a short dragging

interaction. The cross-slide method of selection eliminates both the dedicated selection mode

and the press-and-hold timed interaction required by other touch interfaces. The cross-slide

method does not conflict with the tap interaction for activation.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

80

In addition to the distance threshold, cross-slide selection is constrained to a 90° threshold area,

as shown in the following diagram. If the object is dragged outside of this area, it is not selected.

The cross-slide interaction is supplemented by a press-and-hold timed interaction, also referred

to as a "self-revealing" interaction. This supplemental interaction activates an animation that

indicates what action will be performed when the interaction is released.

The following screen shots demonstrate how the self-revealing interaction animation works.

Unselected state. Press finger down to start

cross-slide interaction.

Drag down to select. Self-revealing

interaction demonstrates what action will

be performed.

Continue to drag down and the self-

revealing image changes to show that the

object can now be dragged and dropped.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

81

Note In addition to the cross-slide, people can single tap for selection in apps where selection

is the only primary action that can be performed. The cross-slide self-revealing animation is

displayed to disambiguate this functionality from the standard tap interaction for activation and

navigation.

Selection basket

The selection basket is a visually distinct and dynamic representation of items that have been

selected from the primary list or collection in the app. This feature is useful for tracking selected

items. Apps should use it where:

 Items can be selected from multiple locations.

 Many items can be selected.

 An action or command relies upon the selection list.

Items in the selection basket can be removed with a cross-slide selection interaction on the item

in the basket. This, in turn, cancels the selection of the corresponding item in the primary list.

Canceling the selection in the primary list removes the item from the basket.

The selection basket also enables a user to select and cancel all items in the current list or

collection at once by using a single interaction.

The following images demonstrate how the selection-basket works.

No items are selected. Item is selected with cross-slide

interaction.

Item is represented in selection basket.

Additional items are selected. Item is removed from selection basket

with cross-slide interaction.

Item selection is canceled.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

82

The content of the selection basket persists across actions and commands. For example, if you

select a series of photographs from a gallery, apply a color correction to each photograph, and

share the photographs in some fashion, the items remain selected.

If no selection basket is used in an app, the current selection should be cleared after an action or

command. For example, if you select a song from a play list and rate it, the selection should be

cleared.

The current selection should also be cleared when no selection basket is used and another item

in the list or collection is activated. For example, if you select an inbox message, the preview

pane is updated. Then, if you select a second inbox message, the selection of the previous

message is canceled and the preview pane is updated.

Queues

A queue is not equivalent to the selection basket list and should not be treated as such. The

primary distinctions include:

 The list of items in the selection basket is only a visual representation; the items in a

queue are assembled with a specific action in mind.

 Items can be represented only once in the selection basket but multiple times in a

queue.

 The order of items in the selection basket represents the order of selection. The order of

items in a queue is directly related to functionality.

For these reasons, the cross-slide selection interaction should not be used to add items to a

queue. Instead, items should be added to a queue through a drag-and-drop action.

Moving (drag and drop)

Drag-and-drop actions move an object from one location to another.

A cross-slide drag-and-drop action is achieved by touching an object and dragging it past a

distance threshold. Windows Touch requires this distance threshold to differentiate between the

drag-and-drop action and the selection action.

If more than one object needs to be moved, select each item with cross-slide selection and then

drag them.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

83

Guidelines for optical zoom and resizing

Optical zoom lets people magnify their view of the content within a content area (it is performed

on the content area itself). Resizing, on the other hand, lets people change the relative size of

one or more objects without changing the view into the content area (it is performed on the

objects within the content area).

Optical zoom should not be confused with the Semantic Zoom interaction. While they share the

same gestures, Semantic Zoom refers to the presentation and navigation of structured data or

content within a single view. The view can be, for example, the folder structure of a computer, a

library of documents, or a photo album.

Both optical zoom and resizing interactions are performed through the pinch and stretch

gestures (moving the fingers farther apart zooms in and moving them closer together zooms

out), or by holding the Ctrl key down while scrolling the mouse scroll wheel, or by holding the

Ctrl key down (with the Shift key, if no numeric keypad is available) and pressing the plus (+) or

minus (-) key.

The following diagrams demonstrate the differences between resizing and optical zooming.

Optical zoom: User selects an area, and then zooms into the entire area.

Resize: User selects an object within an area, and resizes that object.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

84

Use the following guidelines for apps that support either resizing or optical zooming:

 If maximum and minimum size constraints are defined, visual feedback should

demonstrate when the user has reached those limits. When the user releases their touch,

the content should snap to the minimum or maximum size.

 Resizing physics should be turned on. These include the following:

 Acceleration: Repeated pinching accelerates resizing. This helps the user to reach

the maximum or minimum size quickly.

 Deceleration: Resizing decelerates when the user stops pinching. This is similar to

sliding to a stop on a slippery surface.

 Absorption: Resizing momentum during deceleration causes a slight bounce-

back effect if a resizing constraint is reached.

 You can use snap points to influence zooming behavior by providing logical points

within the content at which to stop zooming and ensure that a specific subset of content

is displayed in the viewport. Provide snap points for common zoom levels or logical

views to make it easier for a user to select those levels. For example, photo apps might

provide a snap point at 100% for image resizing or, in the case of mapping apps, snap

points might be useful for the transitions from city to state to country views.

Snap points enable users to be imprecise and still achieve their goals.

There are two types of snap-points:

 Proximity - After the contact is lifted, a snap point is selected if inertia stops

within a distance threshold of the snap point.

 Mandatory - The snap point selected is the one that immediately precedes or

succeeds (depending on the direction of the gesture) the last snap point crossed

before the contact was lifted. A snap point can't be skipped due to inertia.

 guidelines for targetingSpace controls according to the .

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

85

 Don't use zooming to navigate the UI or expose additional controls within your app, use

a panning region instead.

Use the following guidelines for apps that support resizing.

 Scaling handles, as shown in the following diagram, should be provided for constrained

resizing. Isometric, or proportional, resizing is the default if the handles are not specified.

 In most cases, you should not put resizable objects within a resizable content area.

Exceptions to this include:

 Drawing apps where resizable items can appear on a resizable canvas or art

board.

 Webpages with an embedded object such as a map.

Note

In all cases, the content area is resized unless all touch points are within the resizable object.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

86

Guidelines for panning

Panning or scrolling helps people navigate within a single view, to display the content of the

view that does not fit (horizontally or vertically) within the viewport. The view can include, for

example, the folder structure of a computer, a library of documents, or a photo album.

Depending on the input device, panning or scrolling is performed within a pannable region by

using:

 A mouse or active pen/stylus to click the scroll arrows, drag the scroll box, or click within

the scroll bar.

 The wheel button of the mouse to emulate dragging the scroll box.

 The extended buttons (XBUTTON1 and XBUTTON2), if supported by the mouse.

 The keyboard arrow keys to emulate dragging the scroll box or the page keys to emulate

clicking within the scroll bar.

 Touch or passive pen/stylus to slide or swipe the fingers in the desired direction.

Sliding (moving the fingers slowly in the panning direction) results in a one-to-one scrolling

relationship where the content scrolls at the same speed and distance as the fingers. Swiping

(rapidly sliding and lifting the fingers) results in the following physics being applied to the

panning animation:

 Deceleration (inertia): Lifting the fingers causes panning to start decelerating. This is

similar to sliding to a stop on a slippery surface.

 Absorption: Panning momentum during deceleration causes a slight bounce-back effect

if either a snap point or a content area boundary is reached.

Note Panning physics are not exposed programmatically.

The scroll control

The scroll control provides assistance to people for panning or scrolling a view. It is exposed to

developers of Windows Store apps using JavaScript at design time through Cascading Style

Sheets (CSS) only. This control has two modes:

 Panning indicators when using touch.

 Scroll bars when using other input methods that include mouse, keyboard, and stylus.

The control manages the modes , without any work by the developer.

Note The scroll control is a just-in-time control: the panning indicator is only visible when the

touch contact is within the pannable region. Similarly, the scroll bar is only visible when the

mouse cursor or keyboard focus is within the scrollable region.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

87

Panning indicators

Panning indicators are similar to the scroll box in a scroll bar. They indicate the proportion of

displayed content to total pannable area and the relative position of the displayed content in

the pannable area.

The following diagram shows two pannable areas of different lengths and their panning

indicators.

Types of panning

Windows 8 supports three types of panning:

 Single axis - panning is supported in one direction only (horizontal or vertical).

 Rails - panning is supported in all directions. However, once the user crosses a distance

threshold in a specific direction, then panning is restricted to that axis.

 Freeform - panning is supported in all directions.

Snap points

Snap points can be used to influence panning behavior by providing logical points within the

content at which to stop panning and ensure that a specific subset of content is displayed in the

viewport. Cognitively, snap points act as a paging mechanism for the user.

In addition, people tend to physically tire of excessive sliding or swiping in large pannable areas.

Snap points enable people to be imprecise and still achieve their goals.

There are two types of snap-points:

 Proximity - After the contact is lifted, a snap point is selected if inertia stops within a

distance threshold of the snap point.

 Mandatory - The snap point selected is the one that immediately precedes or succeeds

(depending on the direction of the gesture) the last snap point crossed before the

contact was lifted. A snap point cannot be skipped due to inertia.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

88

Panning snap-points are useful for apps such as web browsers and photo albums that emulate

paginated content or have logical groupings of items that can be dynamically regrouped to fit

within a viewport or display.

Panning to a certain point and releasing causes the content to pan to a logical location.

Begin panning content

Pan to a midway point and release

Pannable area moves to the snap point

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

89

Rails

It is common for webpages to be wider and taller than the screen of a display device. For this

reason, two-dimensional panning (horizontal and vertical) is often necessary. To improve the

user experience in these cases, rails encourage panning in one dimension while locking out

panning in the other dimension. This is accomplished by providing horizontal and vertical

boundaries (rails) where panning is constrained unless the user drags a finger to exit the rail.

User experience guidelines

Use the following guidelines for apps that support panning:

One-dimensional overflow

Use one-dimensional panning when the content area extends beyond the viewport along a

single axis.

 Use vertical panning for a one-dimensional list of items.

 Use horizontal panning for a grid of items.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

90

Don’t use mandatory snap-points if a user should be able to pan and stop between snap-points.

Mandatory snap-points guarantee that the user will “stop” on a snap-point. Use proximity snap-

points instead.

Two-dimensional overflow

Use two-dimensional panning when the content area extends beyond the viewport along both

axes.

 Override the default rails behavior and use freeform panning for unstructured content

where the user is likely to move in multiple directions. For example, freeform panning is

typically suited to photographs or maps.

Paged view

Use mandatory snap-points when the content is composed of discrete elements or you want to

display an entire element. This can include pages of a book or magazine, a column of items, or

individual images.

 A snap-point should be placed at each logical boundary.

 Each element should be sized to fit the view.

Logical and key points

Use proximity snap-points if there are key points or logical places in the content that a user will

likely stop.

 A snap-point should be placed at each section header.

Panning indicators and scroll bars

Display panning indicators and scroll bars to provide location and size cues. Hide them if the

app provides a custom navigation feature.

Note Unlike standard scroll bars, panning indicators are purely informative. They are not

exposed to input devices and cannot be manipulated in any way.

Chaining embedded or nested content

Chaining is used for panning within a single-axis content area that contains one or more single-

axis or freeform panning regions (when the touch contact is within one of these child regions).

When the panning boundary of the child region is reached in a specific direction, panning is

then activated on the parent region in the same direction.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

91

For example, a photo album could support freeform panning within each individual image while

also supporting single-axis panning within the album to the previous or next images.

When a pannable region is placed inside another pannable region it's important to specify

enough space between the container and the embedded content. In the following diagrams,

one pannable region is placed inside another pannable region, each going in perpendicular

directions. There is plenty of space for people to pan in each region.

Without enough space, as shown in the following diagram, the embedded pannable region can

interfere with panning in the container. This can result in unintentional panning in one or more

of the pannable regions.

Don't chain or place one pannable region within another pannable region if they both pan in the

same direction, as shown in the following diagram. This can result in the parent area being

panned unintentionally when a boundary for the child area is reached. Consider making the

panning axis perpendicular.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

92

Guidelines for rotation

Rotation is the touch-optimized technique used by Windows Store apps in Windows 8 to enable

people to turn an object in a circular direction (clockwise or counterclockwise).

Depending on the input device, the rotation interaction is performed by using:

 A mouse or active pen/stylus to move the rotation gripper of a selected object.

 Touch or passive pen/stylus to turn the object in the desired direction using the rotate

gesture.

When to use rotation

Use rotation to help people directly rotate UI elements. The following diagrams show some of

the supported finger positions for the rotation interaction.

Note Intuitively, and in most cases, the rotation point is one of the two touch points unless the

user can specify a rotation point unrelated to the contact points (for example, in a drawing or

layout app). The following images demonstrate how the user experience can be degraded if the

rotation point is not constrained in this way.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

93

This first picture shows the initial (thumb) and secondary (index finger) touch points: the index

finger is touching a tree and the thumb is touching a log.

In this second picture, rotation is performed around the initial (thumb) touch point. After the

rotation, the index finger is still touching the tree trunk and the thumb is still touching the log

(the rotation point).

In this third picture, the center of rotation is defined by the app (or set by the user) to be the

center point of the picture. After the rotation, because the picture did not rotate around one of

the fingers, the illusion of direct manipulation is broken (unless the user has chosen this setting).

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

94

In this last picture, the center of rotation is defined by the app (or set by the user) to be a point

in the middle of the left edge of the picture. Again, unless the user has chosen this setting, the

illusion of direct manipulation is broken in this case.

Windows 8 supports three types of rotation: free, constrained, and combined.

Free rotation

Free rotation enables a user to rotate content freely anywhere in a 360 degree arc. When the

user releases the object, the object remains in the chosen position. Free rotation is useful for

drawing and layout apps such as Microsoft PowerPoint, Word, Visio, and Paint; and Adobe

Photoshop, Illustrator, and Flash.

Constrained rotation

Constrained rotation supports free rotation during the manipulation but enforces snap points at

90 degree increments (0, 90, 180, and 270) upon release. When the user releases the object, the

object automatically rotates to the nearest snap point.

Constrained rotation is the most common method of rotation, and it functions in a similar way

to scrolling content. Snap points let a user be imprecise and still achieve their goal. Constrained

rotation is useful for apps such as web browsers and photo albums.

Combined rotation

Combined rotation supports free rotation with zones (similar to rails in panning) at each of the

90 degree snap points enforced by constrained rotation. If the user releases the object outside

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

95

of one of 90 degree zones, the object remains in that position; otherwise, the object

automatically rotates to a snap point.

Note A user interface rail is a feature in which an area around a target constrains movement

towards some specific value or location to influence its selection.

Guidelines for Semantic Zoom

Semantic Zoom is a touch-optimized technique used by Windows Store apps in Windows 8 for

presenting and navigating large sets of related data or content within a single view. The single

view may include, for example, a photo album, app list, or address book.

Note

This functionality is analogous to panning and scrolling (which can be used in conjunction with

Semantic Zoom) within a single view.

Semantic Zoom uses two distinct modes of classification (or zoom levels) for organizing and

presenting the content: one low-level (or zoomed in) mode that is typically used to display items

in a flat, all-up structure and another, high-level (or zoomed out) mode that displays items in

groups and enables a user to navigate quickly and browse through the content.

The Semantic Zoom interaction is performed with the pinch and stretch gestures (moving the

fingers farther apart zooms in and moving them closer together zooms out), or by holding the

Ctrl key down while scrolling the mouse scroll wheel, or by holding the Ctrl key down (with the

Shift key, if no numeric keypad is available) and pressing the plus (+) or minus (-) key.

Examples of apps that could use Semantic Zoom include:

 An address book that organizes contacts alphabetically (or by some other means) and

presents the data by using the letters of the alphabet. The user could then zoom in on a

letter to see the contacts associated with that letter.

 A photo album that organizes images by metadata (such as date taken). The user could

then zoom in on a specific date to display the collection of images associated with that

date.

 A product catalog that organizes items by category.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

96

Other examples of Semantic Zoom layouts:

Zoomed in Zoomed out

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

97

Navigating with Semantic Zoom

While navigating content is possible through panning and scrolling alone, powerful navigational

and organizational capabilities are possible when paired with Semantic Zoom.

Panning and scrolling are useful for small sets of content and short distances. However,

navigation quickly becomes cumbersome for large sets of content. Semantic Zoom greatly

reduces the perception of traveling long distances when navigating through large amounts of

content and provides quick and easy access to locations within the content.

Note Semantic Zoom should not be confused with optical zoom. They do share interaction and

basic behavior, displaying more or less detail based on a zoom factor. However, optical zoom

refers to the adjustment of magnification for a content area or object such as a photograph.

Scroll jump

Tapping the content in zoomed-out mode zooms the view and pan to the tapped point, as

shown in these three diagrams.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

98

Zoomed out, the entire content can be a touch target.

A tap on a section of the content.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

99

Zoomed in and panned to the tapped area.

Transitions

A smooth cross-fade and scale animation is used for the transition from one semantic zoom

level to another. This is the default Windows Touch behavior and cannot be customized.

Considerations and recommendations

You are responsible for defining the two semantic levels in your apps.

Consider these questions when designing the zoomed-out mode:

 How should the structure and presentation of the info change based on the zoom level?

 Would hints, or "signposts," be helpful for navigating the data?

 What amount of content provides a useful semantic view while minimizing panning and

scrolling?

These considerations are often in conflict with each other. You want rich content with lots of info

so that people know where they are jumping to. But you need to balance this info with the total

length of the semantic level. If people need to pan a lot in the zoomed-out mode, you lose the

main benefit provided by Semantic Zoom—quick navigation.

Dos and Don'ts

The following dos and don'ts ensure a successful Semantic Zoom experience for your customers.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

100

Dos

 Use the correct touch target size for elements that are useable or interactive.

 Provide a suitable and intuitive Semantic Zoom region.

 People often initiate Semantic Zoom from within the area that surrounds the displayed

items. Make the Semantic Zoom region large enough to encompass this area. For

example, the Windows Store provides a large amount of white space around the app list

where the user can place their fingers and zoom in or out.

 Use structure and semantics that are intrinsic to the view.

 Use the group names for items in a grouped collection.

 Use sort ordering (such as chronological ordering for dates or alphabetical ordering for a

list of names) for an ungrouped, but sorted, collection.

 Use pages to represent a document collection.

 Ensure that the item layout and panning direction does not change based on zoom level.

 Layouts and panning interactions should be consistent and predictable across zoom

levels.

 Limit the number of pages (or screens) in the zoomed-out mode to three.

 Semantic Zoom enables a user to jump quickly to content. Introducing excessive panning

destroys this benefit.

Don'ts

 Don't use Semantic Zoom to change the scope of the content.

 For example, a photo album should never switch to a folder view in File Explorer.

 Don't set a border on the SemanticZoom control's child controls.

 If you set borders on both the SemanticZoom and its child controls, the

SemanticZoom border and the border of the child control that is in view are both

visible. When zooming in or out, the child control's borders are scaled along with the

content and don't look good. Set a border only on the SemanticZoom control.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

101

Guidelines for selecting text and images

Touch optimization

Text selection and manipulation are particularly susceptible to user experience challenges

introduced by touch interactions. Mouse, pen/stylus, and keyboard input are highly granular: a

mouse click or pen/stylus contact is typically mapped to a single pixel, and a key is pressed or

not pressed. Touch input is not granular; it's difficult to map the entire surface of a fingertip to a

specific x-y location on the screen to place a text caret accurately.

To accommodate the less precise targeting behavior of touch interactions, the visuals for the

selection and manipulation user experience have been completely redesigned for Windows 8.

These visuals include "grippers", which both indicate that a selection can be adjusted and

identify the interaction target.

Note

Grippers are used for text selection, media controls, resizing, and image cropping.

With touch, selection interactions are performed primarily through gestures such as a tap to set

an insertion cursor or select a word, and a slide to modify a selection. As with other Windows 8

touch interactions, timed interactions are limited to the press and hold gesture to display a

context menu.

Interactions through mouse, pen/stylus, and keyboard all behave as expected with the new

selection visuals.

Editable and non-editable content

Windows 8 recognizes two possible states for selection interactions, editable and non-editable,

and adjusts selection UI, feedback, and functionality accordingly.

Editable content

The following image demonstrates how to place an initial insertion cursor with gripper by

tapping near the beginning or ending of a word.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

102

The following image demonstrates how to adjust a selection by dragging the gripper.

The following images demonstrate how to invoke the context menu by tapping within the

selection or on a gripper (press and hold can also be used).

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

103

Note These interactions vary somewhat in the case of a misspelled word. Tapping a word that is

marked as misspelled will both highlight the entire word and invoke the suggested spelling

context menu.

Non-editable content

The following image demonstrates how to select a word by tapping within the word (no spaces

are included in the initial selection).

Follow the same procedures as for editable text to adjust the selection and display the context

menu.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

104

Guidelines for targeting

Touch targeting in Windows 8 uses the full contact area of each finger that is detected by a

touch digitizer. The larger, more complex set of input data reported by the digitizer is used to

increase precision when determining the user's intended (or most likely) target. This ensures a

much more satisfying experience for the user by improving accuracy and instilling confidence in

their touch interactions.

The following recommendations describe how to optimize your app for touch targeting.

Measurements and scaling

To be consistent across different screen sizes and pixel densities, all target sizes are represented

in physical units (millimeters). Physical units can be converted to pixels by using the following

equation:

Pixels = Pixel Density × Measurement

The following example uses this formula to calculate the pixel size of a 9 mm target on a 135

pixel per inch (PPI) display at a 1x scaling plateau:

Pixels = 135 PPI × 9 mm

Pixels = 135 PPI × (0.03937 inches per mm × 9 mm)

Pixels = 135 PPI × 0.35433 inches

Pixels = 48 pixels

This result must be adjusted according to each scaling plateau defined by the system.

Thresholds

Distance and time thresholds may be used to determine the outcome of an interaction.

For example, when a touch-down is detected, a tap is registered if the object is dragged less

than 2.7 mm from the touch-down point and the touch is lifted within 0.1 second or less of the

touch-down. Moving the finger beyond this 2.7 mm threshold results in the object being

dragged and either selected or moved. Depending on your app, holding the finger down for

longer than 0.1 second may cause the system to perform a self-revealing interaction.

Target sizes

There are no definitive recommendations for how large a target should be or where it should be

placed within your app. The size and target area of an object depend on various factors,

including the user experience scenarios and interaction context.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

105

The following diagram shows how target size is typically a combination of a visual target, actual

target size, and any padding between the actual target and other potential targets.

The following table lists the minimum and recommended sizes for all components of a touch

target.

Target

component Minimum size Recommended size

Padding 2 mm Not applicable.

Visual target

size

< 60% of actual size 90-100% of actual size

Actual target

size

9 x 9 mm (48 x 48 px @ 1x)

For elements smaller than recommended,

the distance from the center of one

element to the center of the other

Not applicable

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

106

element should be at least 9mm.

Total target

size

11 x 11 mm (approximately 60 px: three

20-px grid units @ 1x)

13.5 x 13.5 mm (72 x 72 px @ 1x)

This implies that the size of the

actual target and padding

combined should be larger than

their respective minimums.

These target size recommendations can be adjusted as required by your particular scenario.

Some of the considerations that went into these recommendations include:

 Frequency of Touches: Consider making targets that are repeatedly or frequently pressed

larger than the minimum size.

 Error Consequence: Targets that have severe consequences if touched in error should

have greater padding and be placed further from the edge of the content area. This is

especially true for targets that are touched frequently.

 Position in the content area

 Form factor and screen size

 Finger posture

 Touch visualizations

 Hardware and touch digitizers

Targeting assistance

Windows provides targeting assistance to support scenarios where the minimum size or

padding recommendations presented here are not applicable. These scenarios include, for

example, hyperlinks on a webpage, calendar controls, drop down lists and combo boxes, or text

selection.

These targeting platform improvements and user interface behaviors work together with visual

feedback (disambiguation UI) to improve user accuracy and confidence.

If a touchable element must be smaller than the recommended minimum target size, the

following techniques can be used to minimize the targeting issues that result.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

107

Tethering

Tethering indicates to a user that they are connected to, and interacting with, an object even

though the input contact isn't directly in contact with the object. Tethering is a visual cue, shown

as a connector from a contact point to the bounding rectangle of an object. Tethering can occur

when:

 A touch contact was first detected within some proximity threshold to an object, and this

object was identified as the most likely target of the contact.

 A touch contact was moved off an object but the contact is still within a proximity

threshold.

This feature is not exposed to Windows Store app using JavaScript developers.

Scrubbing

Scrubbing means to touch anywhere within a field of targets and slide to select the desired

target without lifting the finger until it is over the desired target. Scrubbing is also referred to as

"take-off activation", where the object that is activated is the one that was last touched when the

finger was lifted from the screen.

Use the following guidelines when you design scrubbing interactions:

 Scrubbing is used in conjunction with disambiguation UI.

 The recommended minimum size for a scrubbing touch target is 20 px (3.75 mm @ 1x

size).

 Scrubbing takes precedence when performed on a pannable surface, such as a webpage.

 Scrubbing targets should be close together.

 An action is canceled when the user drags a finger off a scrubbing target.

 Tethering to a scrubbing target is specified if the actions performed by the target are

non-destructive, such as switching between dates on a calendar.

 Tethering is specified in a single direction, horizontally or vertically.

Guidelines for visual feedback

You should be sure that your app provides people with visual feedback on their touch

interactions. Visual feedback helps people recognize how Windows and your app interpret their

touch input. Visual feedback can indicate successful interactions, relay system status, improve

the sense of control, reduce errors, encourage interaction, and help people understand, learn,

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

108

and adapt to the system and input device. Touch visualizations are critical for activities that

require accuracy and precision.

For example, if a user attempts to tap a control but misses, the location of the tap should be

clearly identified so people know how far their tap was from the target.

If you're using the standard Windows UI and controls we provide, you get that visual feedback

for free. If you create custom UI, then you need to consider when and how to provide

appropriate feedback. Visual feedback might be inappropriate for games or drawing apps where

the feedback distracts from the user task without providing much added information.

Visual feedback

If you need to implement custom visual feedback, also called touch visualizations, follow these

guidelines.

 All controls must provide touch feedback.

 Touch events should provide feedback no matter how brief the contact:

 To confirm that the touch screen is working.

 To show that a target was not touched and the user must try again.

 To show that a target is not touch-enabled.

 To show that a control or app is not responding.

 Feedback must be immediate for all touch events.

 Feedback should be shown only for the control interpreted as touched.

 Feedback should consist of subtle, intuitive cues that do not distract people from their

intended action.

 Disambiguation, or informational, UI should identify the control, show available

functionality, and provide guidance where necessary. The next section describes

informational UI in greater detail.

 Do not show visual feedback during panning or dragging; the actual movement of the

object on the screen is sufficient. However, if the content area does not pan or scroll,

then you should use touch visualizations to indicate the boundary conditions.

 Touch targets should cling to the fingertip during any manipulation.

 Show the "tether" visualization when the finger is dragged off the element, but not lifted,

to demonstrate that the element is still the active element. The following screen shot

shows how tethering maintains the visual and mental connection to the active element.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

109

An app can opt out of touch visualizations, but this is recommended only for situations where

the visualizations interfere with the use of the app. These situations can occur, for example, with

a game or drawing app.

Informational user interface

Informational UI, also known as disambiguation UI, helps overcome fingertip occlusion, displays

information about an object, and describes functionality and how to access it. Tooltips, rich

tooltips, and context menus are used to implement this touch feature.

A timed interaction, touch-and-hold, is dedicated to the display of informational UI. The touch-

and-hold interaction involves touching the screen without lifting the finger for a specified

amount of time until an informational UI is displayed. A timed interaction is acceptable in this

case as it acts as a tool for learning and exploration.

The recommended amount of time depends on the type of informational UI being presented, as

described in the following table.

Informational UI type Timing Activation Description

Occlusion tooltip (for

scrubbing and small

targets)

0 ms Yes Intended for rapid clarification of actions.

Typically used for commands.

Occlusion tooltip (for

actions)

200 ms Yes

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

110

Informational pop-up (rich

tooltip)

~2000

ms

No Intended for slower, more deliberate

exploration and learning. Typically used

with collection items.

Self-revealing interaction ~2000

ms

No

Context menu ~2000

ms

No Exposes a limited set of commands related

to the selected object.

Occlusion tooltips for scrubbing and small targets

These tooltips should describe the occluded target. These tooltips are useful when targeting and

activating items smaller than a standard touch target size, such as hyperlinks on a webpage.

You can replace these tooltips by an informational pop-up after a certain time threshold has

passed. After this initial threshold, the tooltip should follow the behavior of the informational

pop-up. For example, this would be used in a browser where the occlusion tooltip shows the

occluded text and, after the time threshold, then shows the full URL.

Occlusion tooltips for actions and commands

These tooltips should describe the action that occurs when the finger is released from an

element. These tooltips are useful when targeting and activating a button or similar control.

It is acceptable for a small-target tooltip to be followed by an action tooltip after a certain time

threshold has passed. In this case, the small-target tooltip should expand to include the

additional information in the action tooltip.

Rich tooltip or informational pop-up

These tooltips should reveal secondary information about an element. For example, a rich

tooltip could be a text description of an image, the full text of a truncated title, or other

information relevant to the target.

Rich tooltips or information pop-ups typically contain information that does not need to be

made available immediately and, in some cases, might be distracting if shown too quickly. A

longer time threshold lets people be more deliberate about obtaining the information.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

111

After a rich tooltip is displayed, the object is no longer activated when the user lifts their finger.

The reason for this is that information gleaned from the tooltip might influence the user to not

to activate the item.

We recommend that the visual design and information in the rich tooltip be distinct and more

substantial than that of a standard tooltip.

Self-revealing interactions

A self-revealing interaction is an informative visual cue (or animation) that demonstrates how to

perform an action with a target object. It provides a preview of the result of that action.

The following images show the self-revealing interaction for a cross-slide selection on the Start

screen. When a user touches an app tile (without dragging the tile) the tile slides down (as if

being dragged) to reveal the selection check mark that would appear if the app were actually

selected.

Unselected state. Press finger down to start cross-slide interaction.

Drag down to select. Self-revealing interaction demonstrates what action will be performed.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

112

Continue to drag down and the self-revealing image changes to show that the object can now

be dragged and dropped.

After a self-revealing interaction is displayed, the object is no longer activated when the user

lifts their finger.

Context menu

The touch-optimized context menu is composed of two parts. A visual cue, the hint, is displayed

as a result of a hold interaction. Then, the context menu itself is displayed after the hint

disappears and the finger is lifted.

Important The context menu should be used only where selection is not possible.

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

113

Guidelines for touch keyboard

The Windows 8 touch keyboard enables text entry for form factors that don’t have a hardware

keyboard or other peripheral keyboard devices. The touch keyboard is invoked when a user taps

on an editable input field, and is dismissed when the input field loses focus. The touch keyboard

is used for text entry only.

The following table presents the practices recommended for programming Windows Store apps

that use the touch keyboard for text entry.

Practice Description

Use the touch keyboard

for text input only, not

for commands or

keyboard shortcuts

The touch keyboard is present on touch-enabled systems when the

user needs to input text. To dismiss the touch keyboard, either

move focus to another control or set the input field to read-only.

Maintain keyboard

presence throughout a

user flow.

If you're creating custom UI, make sure your custom controls have

the proper UI Automation ControlType. This ensures keyboard

persistence when focus moves from a text input field while in the

context of text entry. For example, if you have a menu that's

opened in the middle of a text-entry scenario, and you want the

keyboard to persist, the menu must have the ControlType Menu.

Ensure that people

always can see the input

field that they're typing

into.

The touch keyboard occludes half of the screen. Windows Store

apps provide a default experience for managing UI when the touch

keyboard appears, by ensuring that the input field with focus

scrolls into view. Handle the Showing and Hiding events exposed

by the InputPane object to customize your app’s reaction to the

keyboard’s appearance.

Implement UI

Automation properties

for custom controls that

have text input.

Standard controls for Windows Store apps have these properties,

but custom controls require you to implement TextPattern. For the

keyboard to persist contextually as focus changes to different

controls, a custom control must have one of the following

properties:

 Button

 Check box

TOUCH, COMMANDING, AND CONTROLS

Touch interaction design

© 2012 Microsoft. All rights reserved. | August 14, 2012

114

 Combo box

 Radio button

 Scroll bar

 Tree item

 Menu

 Menu item

Don't use the touch

keyboard as a

commanding and

controlling device.

The touch keyboard doesn't provide many of the accelerators or

command keys found on a hardware keyboard, such as alt, the

function keys, or the Windows Logo key. Don't make people

navigate their app by using the keyboard.

Don't keep the

keyboard displayed only

to keep the touch

keyboard on the screen.

When you don't expect text entry to occur, don't display the touch

keyboard.

Don't manipulate UI

Automation properties

to control the touch

keyboard.

Other accessibility tools rely on the accuracy of UI Automation

properties.

TOUCH, COMMANDING, AND CONTROLS

Commanding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

115

Commanding design
You have several surfaces you can place commands and controls on in your Windows Store app,

including the app window, pop-ups, dialogs, and bars. Choosing the right surface at the right

time can mean the difference between an app that's a breeze to use and one that's a burden.

Use the canvas

Users should be able to complete the core scenarios just by using the canvas. Whenever

possible, let users directly manipulate the content on the app's canvas, rather than adding

commands that act on the content.

For example, in a Restaurant browsing app, finding and viewing restaurant details should be

done on the canvas by tapping, panning, or selecting content.

Use the charms

Leverage the charm and app contracts to enable common app commands. Avoid duplicating the

functionality of app contracts on your app's canvas or in the app bar.

 Search: Let your users quickly search through your app's content from anywhere in the

system, including other apps. And vice versa.

 Share: Let your users share content from your app with other people or apps, and

receive shared content.

 Devices: Let your users enjoy audio, video, or images streamed from your app to other

devices in their home network.

 Settings: Consolidate all of your settings under one roof and let users configure your

app with a common mechanism they're already familiar with.

TOUCH, COMMANDING, AND CONTROLS

Commanding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

116

Use the app bar

Use the app bar to display commands to users on demand. The app bar shows commands

relevant to the user's context, usually the current page, or the current selection.

The app bar is not visible by default. It appears when a user swipes a finger from the top or

bottom edge of the screen. The app bar can also appear programmatically on object selection

or on right click.

The app bar is transient, going away after the user taps a command, taps the app canvas, or

repeats the swipe gesture. If needed, you can keep the app bar visible to ease multi-select

scenarios.

Use context menus

You can use context menus for clipboard actions (like cut, copy, and paste), or for commands

that apply to content that cannot be selected (like an image on a web page).

The system provides apps with default context menus for text and hyperlinks. For text, the

default context menu shows the clipboard commands. For hyperlinks, the default menu shows

commands to copy and to open the link.

TOUCH, COMMANDING, AND CONTROLS

Commanding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

117

Command placement

Let's use a fictional restaurant app to illustrate the process of organizing commands for the app

bar, focusing on a browsing scenario.

Organize commands

The first step is to identify all the app commands and organize them by the scenario or location.

The following list of commands are commonly used when browsing for a restaurant.

 What commands should appear throughout the entire app?

 What commands should show only on certain pages?

 What commands should use charms or go in settings?

Create command sets

Next we group commands into command sets. The app bar displays command sets as a unit,

with a divider between the sets.

 What commands are functionally related?

 What commands toggle different view types?

 What commands should appear when a selection is made?

View commands Filter commands Sort commands

TOUCH, COMMANDING, AND CONTROLS

Commanding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

118

Selection commands Map view commands New Item commands

Create menus

Next, consider whether your command sets would work better in a command menu.

 Is the app bar too crowded or are there too many commands to fit?

 Is there a set that would benefit from longer labels or interactive controls?

Menus let you present more options in less space and

include interactive controls.

In this example, the Sort menu pops up a simple list

that makes choosing options easy. The Filter menu

pops up a set of controls that lets users filter items by

more complex criteria.

Place commands on the app bar

There are a few ways to position commands within the app bar, and variations may occur

depending upon certain circumstances. Follow these command placement rules whenever

possible.

Predictability To the extent possible, use consistent interaction and command placement

across all views of your app.

Ergonomics Consider how the placement of specific commands can improve the speed or ease

with which a command can be acted upon.

TOUCH, COMMANDING, AND CONTROLS

Commanding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

119

Aesthetics Limit the number of commands to avoid the app bar from looking complicated.

Choose icons that are easy to understand or predict. Keep text labels short.

1. Place persistent commands on the right

Start by placing default commands on the right side of the app bar. If there are only a few

commands, the app bar may end up with commands only on the right.

In this example for the Browse commands, the view command set and the filter/sort set are

persistent.

2. Use the edges

If there is a larger number of commands, separate the distinct sets of commands on the left or

the right to balance out the app bar and to make commands more ergonomically accessible.

Here we decide to move the view command set to the left and keep the filter/sort set on the

right. In this example, when map view is active the map view commands appear to the right of

the view command set.

3. Show/hide disabled commands

Commands that are not relevant in certain circumstances should be hidden. When they do

appear, they should not disrupt the ordering of persistent commands.

In this example, when map view is active the map view commands appear to the right of the

view command set.

4. Insert selection commands

TOUCH, COMMANDING, AND CONTROLS

Commanding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

120

Commands that appear when the user makes a selection go on the far left, sliding over any

commands that may have been there. This makes selection commands more noticeable and

easier to access.

Here the view command set slides over to the right to make room for the selection command

set.

Use standard placement for common commands

Some commands are common and appear in many apps. To create consistency and instill

confidence, follow these guidelines when deciding where to place commands in the app bar.

Selection commands Commands related to your selection always appear on the far left,

whether they are contextual commands that appear on selection, or commands that affect your

selection.

In this example, before users select anything, a "Select all" command appears on the left. After

users select something, the other selection commands appear on the left.

New Item command If your app calls for a "New" command, where any new type of entity is

created (add, create, compose), place that command against the right edge of the bar. This gives

every "New" command, regardless of the specific app or context, consistent placement and

makes it easily accessible with thumbs.

In this example, the "New review" command lets users create a new restaurant review. Other

commands, related to "New review," are placed next to it to the left.

The + glyph should only be used to represent the "New" command, and it should not appear

anywhere else in an app bar.

TOUCH, COMMANDING, AND CONTROLS

Commanding design

© 2012 Microsoft. All rights reserved. | August 14, 2012

121

Delete commands Use Delete/New if your app is about managing

individual entities that may persist outside of your particular app, like

in a mail or camera app. Delete/New should always appear in this

order.

Remove commands Use Remove/Add if your app is about managing

a list, such as a to-do list, a list of cities in a weather app, or a list of

bookmarked restaurants. Remove should always appear to the left of

Add.

Clear commands Use clear if you are taking a destructive action on

all possible items. Use the command label to be explicit about what

the command will act on, such "Clear selection."

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

122

Controls

Guidelines for text input

Is this the right control?

Text input controls let people enter and edit a text or numeric value. Consider these questions

when deciding whether to use a text input control.

 Is it practical to enumerate all the valid values efficiently? If so, consider using one of

the selection controls instead.

 Is the valid data completely unconstrained? Or is the valid data constrained only by

format (constrained length or character types)? If so, use a text input control.

 Does the value represent a data type that has a specialized common control? If so,

use the appropriate control instead of a text input control. For example, use a

DatePicker instead of a text input control to accept a date entry.

 If the data is numeric:

 Do people perceive the setting as a relative quantity? If so, use a slider.

 Would the user benefit from instant feedback on the effect of setting changes? If

so, use a slider, possibly along with an accompanying control.

There are single-line and multi-line text input controls. The next section describes when to use

single-line text input controls, and later sections describe multi-line text input controls.

Choosing the right single-line text input control

For short strings, use a single-line text input control. This table describes when to use the

different types of text input controls.

Basic data

input

Use single-line text input controls to gather small pieces of text from people.

The following example shows a single-line text box to capture an answer to a

security question. The answer is expected to be short, and so a single-line text

box is appropriate here. Because the information collected does not match any

of the specialized input types that Windows recognizes, the generic "Text" type

is appropriate.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

123

Formatted

data input

Use a set of short, fixed-sized, single-line text input controls to enter data with

a specific format.

Assisted

data input

Use a single-line, unconstrained text input control to enter or edit strings,

combined with a command button that helps people select valid values.

Numeric

input

Use a single-line, number input control to enter or edit numbers.

Password

and PIN

input

Use a single-line password input control to enter passwords and PINs securely.

Email input Use the single-line email input control to enter an email address.

When you use an email input control, you get the following for free:

 When people navigate to the text box, the touch keyboard appears with

an email-specific key layout.

 When people enter an invalid email format, a dialog appears to let them

know.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

124

URL input Use the URL input control for entering web addresses.

Telephone

number

input

Use the telephone number input control for entering telephone numbers.

Dos and don’ts for single-line input boxes

Do

Use several single-line text boxes to capture many small pieces of text information. If

the text boxes are related, group them together.

Provide placeholder text in your single-line text boxes if you believe people need

instructions for entering a value.

Make the size of your single-line text boxes slightly wider than the longest

anticipated input. If doing so makes the control too wide, separate it into two

controls; for example, you could split a single address input into "Address line 1" and

"Address line 2".

Set a maximum length. If the backing data source doesn't allow a long input string,

limit the input and use a validation popup to let people know when they reach the

limit.

Don't

Don't use a text area with a row height of 1 to create a single-line text box.

Instead, use the input type="text" element.

Don't use placeholder text to pre-populate the text control. Text boxes clear

placeholder text when people use the control. Use the "value" attribute instead.

Don't use a text box as a search box. It's common practice in web pages to use an

input element to create a search box. However, you create a much better and more

consistent experience when you use the Search charm instead. The Search charm

provides a consistent searching experience that your app can plug into.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

125

Don't put another control right next to a password input box. The password input

box has a password reveal button for people to verify the passwords that they have

typed. Having another control right next to it might make people accidentally reveal

their passwords when they try to interact with the other control. To prevent this from

happening, put some spacing between the password in put box and the other control,

or put the other control on the next line.

Choosing the right multi-line text input control

When people need to enter or edit long strings, use a multi-line text control. There are two

types of multi-line text input control: the plain text input control (the textarea element) and the

rich text control (an element, such as a div, that has its contenteditable attribute set to true).

 Use a rich text box if the primary purpose of the multi-line text box is to create

documents (such as blog entries or the contents of an email message), and those

documents require rich text.

 Use a rich text box if you want people to be able to format their text.

 When you capture text that is only consumed, and not redisplayed later, use a plain text

input control. For example, a user completes the survey and the data is sent to a server,

but the user doesn't see the data again. It is unnecessary to allow people to style this

text.

 For all other scenarios, use a plain text input control.

Dos and don'ts for multi-line text input controls

Do

When you create a rich text box, provide styling buttons and implement their

actions. (Windows Store apps using JavaScript don't automatically provide these

controls for you.)

Use a font that represents the feel of your app.

Make the height of the text control tall enough to accommodate typical entries.

When you capture long spans of text where users are expected to keep their word

count or character count below some maximum, use a plain text box. Also, provide a

live-running counter to show the user how many characters or words they have left

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

126

before they reach the limit. You will need to create the counter yourself. Place it near

the text box and update it dynamically as the user enters each character or word.

Don't

Don't let your text input controls grow in height while people type.

Don't use a multi-line text box when people need only a single line.

Don't use a rich text control if plain text is adequate.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

127

Guidelines for spell checking

Windows Store apps provide a built-in spell checker for multiline and single text input boxes.
Here's an example of the built-in spell checker:

Use spell checking with text input controls for these two purposes:

 To auto-correct misspellings

The spell checking engine automatically corrects misspelled words when it’s confident

about the correction. For example, the engine automatically changes "teh" to "the."

 To show alternate spellings

When the spell checking engine is not confident about the corrections, it adds a red line

under the misspelled word. It displays the alternates in a context menu when you tap or

right-click the word.

Spell checking is turned on by default for multiline text input controls and turned off for single-

line controls.

Dos and Don'ts

Do

Use spell checking to help people as they enter words or sentences into text input

controls. Spell checking works with touch, mouse, and keyboard input.

Don't

Don’t use spell checking where a word is not likely to be in the dictionary or

where people wouldn’t value spell checking. For example, don’t turn it on for input

boxes of passwords, telephone numbers, or names. (Spell checking is disabled by

default for these controls.) Telephone numbers, passwords, and names are rarely in

the dictionary, so spell checking them doesn't do any good and might be distracting.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

128

Don’t disable spell checking just because the current spell checking engine

doesn't support your app language. When the spell checker doesn't support a

language, it doesn't do anything, so there's no harm in leaving the option on. Also,

some people might use an Input Method Editor (IME) to enter another language into

your app, and that language might be supported. For example, when building a

Chinese app, although the spell checking engine doesn’t recognize Chinese now, don’t

turn spell checking off. The user may switch to an English IME and type English into

the app. Then, if spell checking is enabled, the English gets spell checked.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

129

Guidelines for thumbnails

If you want people to browse files with your app, let them see previews of those files as they

browse by displaying thumbnail images. For example, when people use a file picker to browse

the file system, Windows use thumbnails to let the user preview all the files in a location as they

browse. We also recommend that you use a thumbnail to give the user a preview of a single file

to display alongside other, more detailed file information.

Using thumbnails to preview files in this way helps keep the look and feel of your app consistent

with Windows Store app design as used in Windows 8.

Appropriate use of thumbnails

 Displaying previews for many items (like files and folders)

For example, a photo gallery app would use thumbnails to give users a small view of

each picture as the users browse their photos.

 Displaying a preview for an individual item (like a file)

For example, the user may want to see more information about a file, including a larger

thumbnail for a better preview, before deciding whether to open the file.

Inappropriate use of thumbnails

 Don't request thumbnails larger than 1024 pixels (on the longest side)

Thumbnail images should be small; sizes over 1024 pixels are not supported.

User experience guidelines

Get thumbnail images that give users the best previews for the kinds of files they are browsing

Users often want to browse for particular kinds of files—they might want to look through their

photos or music. Provide thumbnail images that are optimized for displaying the kinds of files

that your user wants to browse. To show thumbnail images for files, specify a thumbnail mode.

This table shows the thumbnail modes that we recommend using for various kinds of files.

Display

previews for

Thumbnail

modes Features of the retrieved thumbnail images

pictures picturesView

videosView

Size: Medium, preferably at least 190 x 130 pixels

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

130

videos Aspect ratio: Uniform, wide aspect ratio of about .7

Cropped for higher-quality previews

documents

music

documentsView

musicView

listView

Size: Small, preferably at least 40 x 40 pixels

Aspect ratio: Uniform, square aspect ratio

Good for previewing album art because of the square

aspect ratio

Documents look the same as they look in a file picker

window (it uses the same icons)

any single item singleItem Size: Large, at least 256 pixels on the longest side

Aspect ratio: Variable, uses the original aspect ratio of

the file

Tip The features of thumbnail images for different modes might become even more specific in

the future. To account for this, we recommend that you specify the thumbnail mode that most

closely describes the kinds of files you want to display previews for. For example, if you want to

display video files you should use the videosView thumbnail mode.

This table shows examples of thumbnail images that you might retrieve for different kinds of

items if you specified a particular thumbnail mode.

Item

Specified thumbnail mode(s)

 picturesView

 videosView

 documentsView

 musicView

 listView

 singleItem

Picture

file

Retrieved thumbnail image: Retrieved thumbnail image:

The thumbnail was cropped

to the square aspect ratio.

Retrieved thumbnail image:

The thumbnail image uses the

original aspect ratio of the file.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

131

Video file Retrieved thumbnail image:

that has an adornment:

The thumbnail has an

adornment that differentiates

it from pictures.

Retrieved thumbnail image:

The thumbnail was cropped

to the square aspect ratio.

Retrieved thumbnail image:

The thumbnail image uses the

original aspect ratio of the file.

Music file Retrieved thumbnail image:

The thumbnail is an icon on a

background of appropriate

size. The app that is

associated with the file

determines the background

color.

Note If the associated app is

a Windows Store app, the

app's tile background color is

Retrieved thumbnail image:

 If the file has album

art, the thumbnail is

the album art.

 Otherwise, the

thumbnail is an icon

on a background of

appropriate size. The

app that is

associated with the

file determines the

background color.

Note If the associated app

is a Windows Store app, the

Retrieved thumbnail image:

If the file has album art, the

thumbnail is the album art and

uses the original aspect ratio of

the file.

Otherwise, the thumbnail is an

icon.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

132

used. app's tile background color

is used.

Document

file

Retrieved thumbnail image:

The thumbnail is an icon on a

background of appropriate

size. The app that is

associated with the file

determines the background

color.

Note If the associated app is

a Windows Store app, the

app's tile background color is

used.

Retrieved thumbnail image:

The thumbnail is an icon on

a background of

appropriate size. The app

that is associated with the

file determines the

background color.

Note If the associated app

is a Windows Store app, the

app's tile background color

is used.

Retrieved thumbnail image:

 The document thumbnail,

if one exists.

 Otherwise, the thumbnail

is an icon.

Folder Retrieved thumbnail image:

 If there is a picture file

in the folder, the

picture thumbnail is

used.

 Otherwise, no

No thumbnail image is

retrieved.

Retrieved thumbnail image:

The thumbnail is an icon that

represents a folder.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

133

thumbnail image is

retrieved.

File group Retrieved thumbnail image:

 If there is a picture file

among the files in the

group, the picture

thumbnail is used.

 Otherwise, no

thumbnail image is

retrieved.

Retrieved thumbnail image:

 If there is a file that

has album art

among the files in

the group, the

thumbnail is the

album art.

 Otherwise, no

thumbnail image is

retrieved.

Retrieved thumbnail image:

 If there is a file that has

album art among the files

in the group, the

thumbnail is the album art

and uses the original

aspect ratio of the file.

 Otherwise, the thumbnail

is an icon that represents a

group of files.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

134

Displaying previews of pictures or videos

 Get thumbnails by using picturesView or videosView thumbnail mode

Retrieved thumbnail images are cropped to make good previews. Windows tries to

preserve the most meaningful part of the picture to use as the thumbnail image. For

example, a portrait-orientated photo is cropped at 1/3 of the height in an attempt to

preserve people's faces that might be in the picture.

Size: Medium, preferably at least 190 x 130 pixels.

Aspect ratio: Uniform, wide aspect ratio of about .7. The uniform aspect ratio is good for

aligning thumbnail images in a grid.

 Display multiple items (like files and/or folders)

picturesView videosViewThumbnail images that are retrieved using the or thumbnail

modes are intended for letting users browse many files. Avoid using them to represent a
single, individual file.

 Represent files using previews, only

Avoid displaying additional file information alongside thumbnails. This lets users browse

the files by seeing just the previews (supplied by the thumbnail images) without the

additional clutter of unneeded details about each file.

This lets users browse files in a layout that is similar to the way that files are displayed in

a file picker when it is called in thumbnail display mode.

 Differentiate folders and file groups from individual files by superimposing a text label

over the thumbnail image

This text label should be either the name of the folder or the criteria used to form the

group of files.

 Display placeholder images while thumbnail images load

A placeholder image is a generic representation that you should display in place of a

thumbnail image while the thumbnail image loads. Using placeholders in this way helps

your app seem more responsive because users can interact with items even before the

previews load.

We recommend that a placeholder be:

 Specific to the kind of item that it stands in for. For example, folders, pictures, and

videos should all have their own specialized placeholders that use different icons,

text, and/or colors.

 The same size and aspect ratio as the thumbnail image that it stands in for.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

135

 Displayed until the thumbnail image is loaded, if a thumbnail can be retrieved.

 If you can't retrieve a thumbnail for an item (like a file, folder, or file group), display a

placeholder

There might be a problem with retrieving the thumbnail for an item. Or, the item (like a

folder or a group of files) might not have a thumbnail. In either case, having a

placeholder that you can fall back on helps make sure that users can browse smoothly

and uninterrupted.

Displaying previews of documents or music files

 Get thumbnails by using musicView, documentsView or listView thumbnail mode

 Display multiple items (like files and/or folders)

The thumbnails that are retrieved by using one of these modes are intended for creating

views that browse multiple files. Avoid using them to represent a single, individual file.

 Represent files by using previews and relevant file information

In addition to previews of the files, which are supplied by thumbnail images, you should

display relevant file information for users while they browse. This lets users identify key

information about a file that may not be readily available from a thumbnail image alone.

For example, you might display the name of the artist for a music file, which users may

not know just by looking at the album art for the file.

This lets users browse files in a layout that is similar to the layout used by a file picker

when it is called in thumbnail display mode.

 Represent folders and file groups by using a placeholder image and by superimposing a

text label over the placeholder

We recommend that you display a placeholder image with superimposed text to

differentiate system constructs like folders and file groups from actual files. A visual

distinction between these types of items will help make it easier for users who are

browsing files with your app.

We recommend that a placeholder should have:

 The same size and aspect ratio as the thumbnail image that it stands in for.

 A text label that is either the name of the folder or the criteria that was used to

form the group of files

 Display placeholder images while thumbnail images load

A placeholder image is a generic representation that you should display in place of a

thumbnail image while the thumbnail image loads. Using placeholders in this way helps

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

136

your app seem more responsive because users can interact with items even before the

previews load.

We recommend that a placeholder be:

 Specific to the kind of item that it stands in for. For example, folders, pictures, and

videos should all have their own specialized placeholders that use different icons,

text, and/or colors.

 The same size and aspect ratio as the thumbnail image that it stands in for.

 Displayed until the thumbnail image is loaded, if a thumbnail can be retrieved.

 If you can't retrieve a thumbnail for an item (like a file, folder, or file group), display a

placeholder

There might be a problem with retrieving the thumbnail for an item. Or, the item (like a

folder or a group of files) might not have a thumbnail. In either case, having a

placeholder that you can fall back on helps make sure that users can browse smoothly

and uninterrupted.

Displaying a preview for a single item

 Get the thumbnail by using singleItem thumbnail mode

 Display a single item (like one file or one folder)

The thumbnail that is retrieved using this mode is intended for creating a detailed view

of a single item. This detail view could be similar to the way that Windows Explorer

displays a single file. Avoid using a thumbnail that is retrieved for single item to

represent that item in a view that displays multiple items.

 Display a placeholder image while the thumbnail image loads

A placeholder image is a generic representation that you should display in place of a

thumbnail image while the thumbnail image loads. Using a placeholder in this way helps

your app seem more responsive because users can interact with the item even before the

preview loads.

We recommend that a placeholder be:

 Specific to the kind of item that it stands in for. For example, folders, pictures, and

videos should all have their own specialized placeholders that use different icons,

text, and/or colors.

 The same size and aspect ratio as the thumbnail image that it stands in for.

 Displayed until the thumbnail image is loaded, if a thumbnail can be retrieved.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

137

 If you can't retrieve a thumbnail for an item (like a file, folder, or file group), display a

placeholder.

There might be a problem with retrieving the thumbnail for an item. Or, the item (like a

folder or a group of files) might not have a thumbnail. In either case, having a placeholder

that you can fall back on helps make sure that users can browse smoothly and

uninterrupted.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

138

Guidelines for Flyouts

Flyouts are great at showing UI that you don't want on the screen all the time. The user can

close a Flyout at any time by simply tapping or clicking outside of it, or by pressing ESC. If users

are in control of bringing up new UI, they must also be in control of dismissing it. When the user

makes a selection in the Flyout, the Flyout should be dismissed.

Do not dismiss a Flyout programmatically unless the user has pressed a command button or

selected a menu item in the Flyout. A Flyout should not be dismissed automatically if the user

has simply toggled a setting, for instance.

Flyouts are useful in your app for any of a number of reasons. Typical uses of a Flyout are:

 Collecting information: If the user selects an action that requires more input, such as

choosing an option or typing information, then that UI can be placed in a Flyout to keep

the user in their original context. For example, let's say that in a map app, users can label

the locations they tag. Users tap the location to tag it, and the app presents a Flyout so

that users can enter their label.

Example: In the browser, to pin an item to the Start screen, the user taps the Pin icon on

the app bar. The user then enters the name of the new tile in a Flyout.

 Warnings and confirmations: Warn the user before they take a potentially destructive

action.

Example: In a photo app, the user presses a delete icon in the toolbar. Next to the

toolbar button, a Flyout appears that warns the user that the photos will be permanently

deleted, and provides the delete command. The user can easily press the revealed delete

command that appears, or dismiss the Flyout if they pressed the delete icon by accident.

Note The only warnings or errors that should go in a Flyout are those that can be shown

immediately and are a direct result of user action.

 Drop-down menus: If a button in an app bar has more than one option, then display a

Flyout to let the user pick the option.

Example: In an email app, the user presses Respond on the app bar, and a menu is

displayed to let the user choose among ways to respond: Reply, Reply All, or Forward. If

the user presses the Cancel button on the app bar, then a menu is displayed to let the

user choose between the ways to Cancel: Discard or Save Draft.

Note Context menus are meant for contextual actions when selecting text; Flyouts

should be used to create drop-down menus from UI elements such as buttons.

 Displaying more info: Show more details about an item on the screen that the user is

interested in.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

139

Example: In the browser, while browsing InPrivate, the user selects the InPrivate icon. A

Flyout then appears to give the user more information about InPrivate mode. Most of

the time the browser UI is kept clean, but if requested can provide more detail for users

that are interested.

When not to use a Flyout

Avoid Flyouts in the following scenarios:

 If a message, error, warning, or other piece of UI is not invoked directly by the user at

that moment, then it should not be a Flyout

Example: Notifications that updates are available, a trial has expired, or the Internet is not

available, should not be displayed in Flyouts.

 If an experience is one that requires prolonged interaction, multiple screens, or lots of UI,

then you should integrate the UI into the canvas of the app. For example:

 The user is working through a wizard with a lot of text entry.

 The user is changing a long list of settings.

 Avoid using a Flyout for the primary list of commands for your app. Use the app bar for

that.

 If a menu is required solely for commands about a text selection, then use a context

Guidelines for context menusmenu instead. See .

Designing a Flyout

The key to designing a good Flyout is to keep it as simple as possible. Don't include parts of a

Flyout that are not necessary for the situation.

Size: The Flyout should be as small as possible given its content. It doesn't need extra padding

beyond what the Flyout provides. If a control isn't absolutely necessary, then don't include it. For

example, if there are no actions for the user to take, then don't include any buttons. There is no

need for Close or OK buttons. Relying on light-dismiss (in which the Flyout disappears when the

user touches anywhere on the screen outside of the Flyout) is enough. Similarly, if a title isn't

absolutely necessary, then don't include a title.

Position: The Flyout should always be positioned near its point of invocation. If the user tapped

on a toolbar button to bring up a Flyout, then the Flyout should show above or below the

toolbar button. If showing the Flyout above or below the control would obscure important

content, then it can be placed to the left or right of it.

The Flyout is positioned by specifying the object to anchor it to and the side of the object that it

should appear on. Flyouts should be center-aligned to their anchor unless the anchor is on the

very edge of the screen (such as the user-tile Flyout on the Start screen).

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

140

Flyouts should never be positioned in non-contextual places such as the center of the screen, for

several reasons:

 When UI is shown in a position disconnected from the action that invoked it, the user

needs to go searching for this UI and is slowed down. The overall experience is

disrupted, creating less pleasant and fluid UI.

 The user may not notice that the Flyout has appeared and may accidentally dismiss it by

continuing to tap, making your app feel unresponsive.

 Users expect that centered (or other arbitrarily positioned windows) contain a Close or

Cancel button. They would use the buttons even if a light-dismiss option was present,

undermining your goal of lightweight UI.

Parts of a Flyout

A Flyout has three components: the title, the main content, and command buttons.

Here are recommendations for when to use each component for each common use of the

Flyout.

Collecting information:

Title None

Main

content

Include just the controls you need. Keep any instructions or "Learn More" links to a

minimum. If the user is changing a setting or toggling an on/off switch, for

example, then the change should commit as soon as it is made. Interacting with

custom content should not dismiss the Flyout; unless there is a command button,

the user should be in control of dismissing the Flyout manually.

Controls

If a button is meant only to commit the user's changes, then it isn't required and

those changes should be committed automatically. If the button begins some

action (such as Login, or Save Document), or the user has entered text that they

want to commit, then a button is appropriate. In that case, the flyout should be

dismissed when the user presses the button. But the user can cancel without

committing by light-dismissing the Flyout.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

141

Warnings and confirmations:

Title None

Main

content

State the warning that the user should consider before they take the action. Do

not phrase it as a question.

Controls

Include just the action that the user initiated, such as Delete. Do not include the

opposite action or a Cancel button; that can be achieved by dismissing the

Flyout.

Menus:

Title None

Main content

List the menu items that the user can interact with.

Controls No buttons are necessary because the user makes a direct selection in the list.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

142

Displaying more info:

Title

Optional title to relate status, or a description of an icon that invoked it.

Main content

Include the information.

Controls Put optional buttons to do more with the information in the Flyout.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

143

Guidelines for message dialogs

Appropriate use of message dialogs

These are scenarios where it is appropriate to take the user out of their immersive experience

and present them with a dialog:

Urgent information

Use message dialogs to convey urgent information that the user must see and acknowledge

before continuing. An example is, "Your trial period for advanced features has expired."

Errors

Error messages that apply to the overall app context use message dialogs. These are different

than error messages that can be conveyed inline. An appropriate example is a message dialog

that shows a connectivity error. This critically affects the value that the user can get from the

app:

Questions

Use message dialogs to present blocking questions that require the user's input.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

144

A blocking question is a question where the app cannot make a choice on the user's behalf, and

cannot continue to fulfill its value proposition to the user. A blocking question should present

clear choices to the user. It is not a question that can be ignored or postponed.

Here's an example of a message dialog from the Windows device consent broker. The dialog

asks for consent to use location services:

Inappropriate use of message dialogs

 When the app needs to confirm the user's intention for an action that the user has taken,

a Flyout is the appropriate surface.

 For errors that are contextual to a specific place on the page, such as validation errors in

password fields, use the app's canvas to show inline errors.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

145

Guidelines for errors

Errors within an app can be communicated to the user through three main surfaces. The app

developer chooses the right surface for an error based on the content and consequences of the

error.

To show: Use this surface:

A non-critical error specific to an element in the app. Your

app cannot fix the problem, but users can.

User interaction: Users can continue to interact with the

app, system components, and other apps without

dismissing the error.

Example: The user enters an invalid string in a text box and

then retypes it.

Text inline on the canvas

 Text only

 Dismissed by app

 Appears inline near the

source of the error

A non-critical error that applies to the whole app. Your app

cannot fix the problem, but users can.

User interaction: Users can continue to interact with the

app, system components, and other apps without

dismissing the error.

Example: Mail cannot sync at the moment.

Text at the top of the page

 Text only

 Dismissed by app

 Appears at the top of the

page

A significant but non-critical error that applies to the

whole app and your app can suggest a solution.

User interaction: Users can respond to your prompt or

continue to interact with the app, system components, and

other apps without dismissing the error.

Error and warning bar

 Text, two buttons

 Dismissed by user

 Appears near the top of the

page

A critical error that applies to the whole app and prevents

the user from using the app.

User interaction: Users cannot continue interacting with

the app unless they dismiss the error. Users can still

interact with system components and use other apps.

Message dialog

 Text, 1 to 3 buttons, title

(optional)

 Dismissed by user

 Appears centered across the

app

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

146

Do not use flyouts, toasts, or custom UI surfaces to display errors.

Errors: Inline text

In general, the inline error is the first choice of surface. An inline text error delivers messages in

the context of the user's current actions or the current app page itself. An inline error does not

require an explicit user action to dismiss the message. The message goes away automatically

when it no longer applies.

Do

Align the message with the control or element that the message relates to.

Lay out the message with ample surround space to increase its focal

strength.

The following example shows an inline error message associated with a specific text box.

Don't Include actions or commands in the message.

In the following example, an Error and Warning bar would be a better choice.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

147

Errors: Error or warning bar

Use an error or warning bar to notify users of important errors and warnings and to encourage

the user to do something. Error messages inform users that a problem occurred, explain why it

happened, and provide a solution so users can fix the problem. Warning messages alert a user

of a condition that might cause a problem in the future.

Do

Position the bar at the top of the screen, encouraging the user to notice and do

something.

Color the bar with a color from the app's palette.

Use the same color and layout for all your error and warning bars.

Don't Display bars with different colors or glyphs (such as a shield or exclamation point) based

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

148

on perceived severity.

Use an 'X' glyph to close the bar; instead, use a labeled Close button.

Use an error and warning bar for information-only message.

The message in the following example is purely informational and no action is required. In this

case, an inline message at the top of the screen should have been used.

Errors: Message dialogs

Use a message dialog only if a modal message is required, blocking the user from interacting

with the app.

Do Use a message dialog if the user must do something before using the app any further.

The following example is an appropriate use of an error message dialog because users cannot

use the app unless they have an active account.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

149

Don't use a dialog if the user can ignore the message.

In the following example, there is nothing about the error that would require you to block users

until they address it. An error or warning bar would have been a better choice.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

150

Guidelines for buttons

Is this the right control?

A button lets the user initiate an immediate action, such as submitting a form.

Don't use a button when the action is to navigate to another page; use a link instead. Exception:

For wizard navigation, use buttons labeled "Back" and "Next".

Choosing the right type of button

There are three types of button controls: submit, reset, and normal buttons. Follow these

guidelines to choose the right button type:

 Submit button

Use the submit button to send a user input to a server or perform an action, such as a

"next" button that saves the form data and goes to the next app page.

 Reset: form reset

Use the reset button to clear a form or page of user input.

 Normal button: customized action

Use the normal button to trigger an action.

A button element without any attribute acts as submit button if it is the first button inside a

form.

Dos and Don'ts

Do

Use a concise, specific, self-explanatory text that clearly describes the action that the

button performs.

Customize the Normal and Submit buttons with text or images to make it clear to

users what happens when they tap or click the button.

When using AJAX to submit a form, use a submit button and override the form submit

function. Then users can commit by pressing the enter key regardless of where the

focus is in the form.

Don't

Don't change the Reset button text, unless you need to change it for localization. The

default English text for the reset button is "Reset".

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

151

Don't swap the default styles of the submit, reset, and normal buttons.

Don't put too much content inside a button. Although the button element can

contain almost any other HTML elements, such as tables and check boxes, putting too

much content inside the button confuses users. Make the content inside a button

concise and easy to understand. A button should not contain anything more than a

picture and some text.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

152

Guidelines for login controls

Many apps provide a personalized or premiere experience to users when they're logged in.

Some apps require the user to log in to a registered account to get value from the app. Other

apps provide a rich baseline experience for all users but enable enhanced features when the

user is logged in.

Login settings

The Settings charm is the best place for users to find and manage their account settings.

If your app offers a way for users to log in to the app or to create an account, enable users to

swipe from the edge and change the login settings in the Settings flyout. This design ensures

predictability and ease of access, regardless of where the user might be in the app's workflow.

Also, this design frees room on the app's canvas that would otherwise be dedicated to login-

related UI.

Login scenarios

Your app may require that the user is logged in, or login may be optional. The login user

experience depends on the app.

Required login

When your app requires users to log in or create an account when the app first runs, the first

screen of the app should feature the login UI prominently. Once the user is logged in, there is

no need for an onscreen login UI. Users log out by using the Settings charm.

Recommended login

If your app needs to elevate the login UI to the app's canvas, provide the controls inline in your

content. This design ensures that users see the login option on the landing page when they first

launch the app, but the login UI doesn’t get in the way of the overall experience.

As users browse the app’s content or views, the logon UI scrolls out of view, but still has a

presence in the app. For example, place a login UI as the first section of the ListView control in

the app’s landing page. For consistency, the user should always be able to find the login UI in

the Settings flyout.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

153

App with login UI hosted as the first section of the ListView control

Optional login

Some apps provide great value without requiring that users are logged in. For example, a news

app may offer an initial view of news articles that are interesting to many different readers. User

can gain value from the app without logging in.

You can host an optional login UI in the Settings flyout, so the login UI doesn't distract from the

content in the app or consume space on the canvas.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

154

Settings charm flyout login Settings flyout login

Contextual login

Sometimes, an app may require a login UI that's specific to some content in the app. For

example, if the user wants to post a comment on a news article, the app may require login.

Indicate the need for a user login by putting a contextual login button on the page. The button

launches the Settings flyout that hosts the login UI.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

155

Logout UI

Once users have logged into the app, they should have a familiar and reliable place in the

system where they can log out of the app, if necessary.

Avoid putting a persistent logout UI on the app's canvas. The Settings flyout for the app is the

right place to enable the user to log out. Once the user has logged in to the app, logging out

happens rarely, if the app is delivering meaningful personal content.

Personalizing the app on login

When a user logs in to Windows, the Start screen conveys the user's identity and personalization

in numerous ways. User preferences for color, layout, apps, and organization of content are

personal and customizable.

Once the user has logged in, your app should update its content based on the user’s

preferences, instead of showing generic content. Each app has a unique way of showing and

delivering personal content, which enhances the user’s experience in a Windows Store app.

When you think about your app’s logged in experience, focus on the content that makes your

app personal and connected.

There are times when the user who logs in to the app is different than the user who logged in to

Windows. For example, a friend who is using someone else’s laptop or slate may want to log in

to their social network. Avoid putting a persistent UI on the app's canvas that shows identity,

because having different identities across the Start screen and the app is more confusing than

rewarding for users.

The Settings Accounts flyout is the most intuitive and reliable location for showing user identity

in a way that doesn’t disrupt the rich, immersive, content-first experience.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

156

Guidelines for app bars

App bars provide the user with easy access to commands when they need them. The user can

swipe the bottom edge of the screen to make app bars appear and can interact with their

content to make app bars disappear. App bars can also be used to show commands or options

that are specific to the user's context, such as photo selection or drawing mode.

If you have a command that is necessary for a user to complete a workflow (such as buying a

product), place those commands on the canvas instead of in app bars.

Guidelines for commands in the app bar

Follow these guidelines when placing your commands on the app bar.

 Do place commands consistently, and organize them into command sets.

1. Start with your commands on the right.

2. If you have distinct sets of commands, then divide those sets up on either side of

the screen. For example, you can have a set for creating new content and a set for

filtering the view.

3. If you have more than two sets, then put the command sets most like each other

on the same side, separated by a separator.

4. Ensure that commands always show in the same relative position, and on the

same side of the screen, whenever they appear inside of your app.

 Do place contextual commands on an app bar, and show that bar programmatically

when an item has been selected without changing views.

Group commands that show on selection (such as Crop/Delete/Pin photo) with Select

all/Clear selection (if those buttons exist) on the left. If there are already commands on

the left, then they should "bump" those commands over, separated by a separator.

 Do set the app bar's dismissal mode to sticky when displaying contextual commands.

If you have contextual commands on an app bar, set the mode to sticky while that

context exists and turn off the sticky mode when the context is no longer present (such

as when a photo is deselected). In sticky mode, the bar does not automatically hide when

the user interacts with the app. This is useful for multi-select scenarios or when the

context involves interaction such as manipulating cropping handles. The bar stays visible

while the user performs the actions. The user can still hide the bar by swiping the top or

bottom edge of the screen, and they can show it again with an edge swipe.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

157

 Do use menus when you have too many commands.

If you are unable to fit all of your commands in an app bar as separate buttons, then

group commands together. Place those commands in menus that are opened from app

bar buttons.

Use logical groupings for the commands, such as placing Reply, Reply All, and Forward in

a Respond menu.

Don't create a menu such as "More" or "Advanced" for unrelated, miscellaneous

commands. These types of generic commands tend to make an app feel more

complicated, and only a small subset of users explore these menus. If you find yourself

needing an overflow and there aren't any logical groupings available, consider

simplifying your app.

 Do design your app bar for snap and portrait view.

If you have ten app bar commands or less, your bar will automatically hide labels and

adjust padding so that those ten commands still fit in snapped or portrait orientation. If

you do not want two rows of commands to appear in snapped view and you have more

than five commands, you can group commands together into menus. Or, provide a more

focused experience that requires fewer commands on each screen.

Don't have more than ten commands on your app bar, because that will wrap to two

lines for many users.

Because labels are hidden by default in snapped and portrait view, use icons that are

easily identifiable for your commands and provide tooltips for all of your commands.

 Do design for horizontal scrolling.

The app bar covers scrollbars when an app has a horizontal scrolling area that appears at

the bottom of the app. The user may need to click in the app to dismiss the app bar in

order to use the scrollbar, or they can use a mouse wheel to scroll.

If your app bar is in sticky mode, such as when content is selected, reduce the height of

your scrolling area so that the scrollbar is flush with the top edge of the app bar.

 Do use the default styles for commands, menus, and flyouts.

If you want to customize the look of an app bar, we recommend customizing the colors

of the background, icons, and labels, but not the size or padding of the buttons. The

layout is carefully designed for touch, as well as to fit ten commands at all supported

screen widths. If you change the layout you may get undesirable behavior.

 Do use the bottom app bar for commands and the top app bar for navigation.

Use the bottom app bar for commands that act on the current page.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

158

Use the top app bar for navigational elements that move the user to a different page. Do

not put navigation on the bottom bar.

 Don't put critical commands on the app bar.

Don't place commands that are essential for the user to complete their task on an app

bar. For example, do not place the Buy button on the app bar of a store's product page,

because it is impossible to complete the core scenario without that button.

If the user feels that they're opening the bar frequently just to accomplish their task, then

consider direct manipulation, Semantic Zoom, or on-canvas commands.

 Don’t put login, logout, or other account management commands in the app bar.

All account management commands, like login, logout, account settings, or create an

account should go in a Settings flyout. If it's critical that the user logs in on a particular

page, provide a button in the main app window to allow the user to log in.

 Don't put clipboard commands for text on the app bar.

Place Cut, Copy, and Paste commands in a context menu rather than in an app bar.

Handling the right mouse button

To keep your app's UI consistent with other Windows Store apps, users must click the right

mouse button to trigger the app bar that you provide. If you have an app that must use the

right mouse button for another purpose, like secondary fire in a game or a virtual trackball in a

3-D viewer, the app can ignore the events that raise the app bar. But still consider the role of the

app bar, or a similar context menu, in your game's control model. It's an important part of the

Windows Store app experience.

Follow these guidelines when designing the controls for your app:

 If your app needs to use right mouse button for an important function, use it for that

function directly. Don't activate any contextual UI or the app bar if it isn't important to

workflow.

 If there are regions of the DirectX surface that don't need app-specific contextual right-

click actions, like border menus, show the app bar when the user right-clicks these

regions.

 If support for a right mouse button is needed everywhere on the canvas, consider

showing the app bar when the user right-clicks the top-most horizontal row of pixels, the

bottom-most horizontal row of pixels, or both.

 If none of these solutions suffice, place a custom control on the DirectX surface to enable

mouse gestures to open the app bar.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

159

 If your app supports touch controls, remember that a long press, or press-and-hold, is

the same as a click on a right mouse button. Handle both events in a similar way.

 Don't provide an alternate behavior for the Win+Z keypress combination in your app.

Develop an app bar or similar context menu, and display it when the user presses the

Windows key with the Z key.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

160

Guidelines for context menus

The context menu is a lightweight menu that gives users immediate access to actions on text

(like clipboard commands) or UI objects in apps. The system provides apps with default context

menus for text and hyperlinks. You can replace the default context menus with menus that show

custom commands for text or hyperlinks. Or, you can create your own context menus that act on

other UI objects (like thumbnails).

Use context menus only to show commands that are directly relevant to users and that cannot

be readily accessed through the app toolbar or direct manipulation (like touch rotation).

Appropriate use of context menus

 Showing clipboard commands

Use a context menu to show clipboard commands (Cut, Copy, and Paste) for objects

such as selected text. By default, the system shows Cut, Copy, and Paste commands for

selected text. Common paste menu commands are Select All, Paste, and Undo. You can

override these commands by showing a customized context menu. Where possible,

mimic system behavior in your app by preserving the default commands.

 Showing custom commands

The system comes with default context menus for text and hyperlinks. Apps can replace

these context menus with their own context menus.

A custom command is appropriate to include in a context menu when it is not found in

the app's toolbar and cannot be performed by using direct interaction (like rotation).

 Showing commands that operate on objects that cannot be selected

Use the context menu to show commands for an object that needs to be acted upon but

that cannot be selected or otherwise indicated.

For example: A chat conversation may not be appropriate to add selection to; in this case

a context menu could make commands available for each message in a chat

conversation.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

161

Inappropriate use of context menus

 Don't add a command to the context menu when direct manipulation or selection is

possible

Users should execute commands primarily by directly manipulating a UI element or by

selecting a UI element and using a command that is on the app bar. This helps ensure

that commands are in predictable and discoverable screen locations.

For example, users should be able to rotate a picture by manipulating the image directly

with their fingers instead of using a "Rotate" command in the context menu.

 Don't duplicate commands in the context menu

If there is already a clear way to accomplish the action like direct manipulation or an

existing app bar command , do not add a context menu command for that same action.

Instead of relying on duplication, trust that users find commands by selecting an item or

navigating to an item to act on it.

However, there is an exception for some actions that can be executed by keyboard

shortcuts. If the action can only be executed by a keyboard shortcut, like CRTL+C to

copy, it is okay to duplicate that action by adding a command to the context menu.

 Don't show a context menu for the background of a page or for a large object

Instead, when you have commands that act on the background of a page or on an object

that takes up the whole screen, use the app bar. Or, add a command to your app's

canvas to act on the page or object.

User experience guidelines

 Keep command names short

The context menu has a maximum width that equates to approximately 50 characters.

When command names are too long, they are truncated automatically and an ellipse

("…") replaces the missing characters. Avoid truncation of your commands in the context

menu by keeping command names short.

 Use sentence capitalization for each command name

The first character of the command should be uppercase and all of the remaining

characters should be lowercase.

 Use a separator to distinguish groups of related commands

Use separators in the context menus to group sets of commands together. Use a

separator to divide app-specific or view-specific commands from a predictable set of

commands, such as clipboard commands, that are shown together.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

162

 Don't use item accelerators

Item accelerators cannot be used with context menu commands. Do not use ampersands

(&) at the beginning of command names in your menu.

 Don't show a command in a context menu unless it is contextually relevant to the

selection or object

The context menu does not have a disabled state; the context menu doesn’t appear if

there are no commands in it.

For example, if there is no text in the clipboard that can be pasted into text that the user

can edit, the default context menu does not show the Paste command. Instead, it shows

only the Cut and Copy commands.

 Don't show a command that would result in an error

For example, do not show the paste command if the paste location cannot be edited.

 Show the fewest number of commands possible, up to the six-command limit

If you're struggling to fit commands into the menu, ask yourself the following questions:

 Can this command be represented with direct manipulation?

 What would your user’s experience be like without this command?

 Is this command accessible in another way? What value, if any, is gained by

duplicating the command in the context menu?

 Does the item have a page that represents it? If so, the command could be in the

app bar or on the canvas on that page instead on the context menu in the

collection.

 Does this command always need to be shown, or only in certain contexts?

 Order custom commands in the context menu by importance, with the most important

commands at the bottom

 Order clipboard commands in the standard Cut, Copy, Paste order and place them at the

bottom of the menu

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

163

If you want to show only two clipboard commands (for example, Cut and Paste) simply

omit the unused command and otherwise preserve the order.

 Position the context menu close to the object your user wants to act on.

The context menu should be positioned close to the object or selection that it is acting

on. When you show the context menu, provide a rectangle for the object that it will act

on, and the context menu will position itself near it. By default, a context menu should be

positioned below the object that it acts on.

 Dismiss the context menu

Programmatically dismiss the context menu when the context it was shown for does not

exist anymore. This can be done by using cancel in the standard async pattern.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

164

Guidelines for check boxes

A check box is a control that the user can check or uncheck by tapping, clicking, or pressing the

space bar on the keyboard. Most check boxes have two states, checked and unchecked, but

some check boxes support a third, indeterminate state. Follow these guidelines for adding check

boxes to your Windows Store app.

Is this the right control?

Use check boxes to present users with a binary choice, one or more options that are not

mutually exclusive, or a mixed choice.

A binary choice

Use a single check box for a yes or no

choice.

One or more options that are not

mutually exclusive

Create a group of check boxes when

users can select any combination of

options.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

165

Mixed choice

When an option applies to more than

one object, you can use a check box to

indicate whether the option applies to all,

some, or none of those objects. When the

option applies to some, but not all, of

those objects, use the check boxes

intermediate state to represent a mixed

choice. One example of a mixed choice

check box is a "Select all" check box that

becomes indeterminate when a user

selects some, but not all, sub-items.

For a binary choice, the main difference between a check box and a toggle switch is that the

check box is for status and the toggle switch is for action. You can delay committing a check box

interaction (as part of a form submit, for example) while you should immediately commit a

toggle switch interaction. Also, only check boxes allow for multi-selection.

When there is more than one option but only one can be selected, use a radio button instead.

Don't use a check box as an on/off control; use a toggle switch instead.

Dos and don'ts

Do

Enclose the check box within a label with a checkbox so that clicking the label

toggles the check box. Doing so increases the size of the selection area and makes

the check box more accessible to touch users.

Use the indeterminate state to indicate that an option is set for some, but not all,

child objects.

When using indeterminate state, use subordinate check boxes to show which options

are selected and which are not.

Don't

Don't put two check box groups next to each other, or users won't be able to tell

which options belong with which group. Use group labels to separate the groups.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

166

Don't use the indeterminate state to represent a third state. The indeterminate

state is used to indicate that an option is set for some, but not all, child objects. So,

don't allow users to set an indeterminate state directly.

For an example of what not to do, this check box uses the indeterminate state to

indicate medium spiciness:

Instead, use a radio button group that has three options: Not spicy, Spicy, and Extra

spicy.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

167

Guidelines for DatePickers

These are recommended practices for using Windows Library for JavaScript DatePicker controls.

Practice Description

Use the DatePicker to display dates on forms

or when you need to use space efficiently.

This practice provides the following benefits:

 The default inline display of the

DatePicker makes it well suited for

these situations.

The DatePicker uses style classes on its outer

container element and on the parts for the

year, month, and day.

This practice provides the following benefits:

 You can modify those style rules, or

provide more specific selectors and

rules to provide custom styling or

layouts.

The DatePicker can also be displayed

vertically.

This practice provides the following benefits:

 This is useful when the width of the

app is narrow, for example when it's

docked.

Don't set the year range to more than 200

years. Instead, define a useful range of years

by using the minYear and maxYear

properties.

This ensures that your users don't have to

scroll through hundreds of entries.

The DatePicker is not a calendar control. It

does not support a pop-up grid style display.

Avoiding this practice ensures that your users

do not expect a pop-up calendar.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

168

Guidelines for TimePickers

These are recommended practices for using Windows Library for JavaScript TimePicker controls.

Practice Description

Use a TimePicker to enable the selection of

times when you need to use space

efficiently.

This practice provides the following benefits:

 The default inline display of the

TimePicker makes it well suited for these

situations.

If you don't want to display the AM and PM

element, hide it by using CSS.

This practice provides the following benefits:

 The entire time is still represented

internally, but users can't see or change

the hidden element.

The TimePicker can be configured to

display minute values in 15-minute

increments.

This practice provides the following benefits:

 Users don't have to scroll through 60

items.

Consider displaying the TimePicker

vertically.

This practice provides the following benefits:

 This is useful when the width of the app

is narrow, for example, when it's docked.

Don't use a TimePicker to display the

current time. It's a static display that's

meant to be set by the user.

Avoiding this practice ensures that your users

don't expect a real-time display.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

169

Guidelines for radio buttons

Radio buttons let users select one option from two or more choices. Each option is represented

by one radio button. A user can select only one radio button in a radio button group. A radio

button has two states: checked and not checked.

Radio buttons are so called because they function like the channel presets on radios. Follow

radio buttonsthese guidelines for adding to your Windows Store app.

Is this the right control?

radio buttonsUse to present users with two or more mutually exclusive options, as here.

Don’t use radio buttons if there are only two mutually exclusive options that you can combine

into a single checkbox. For example, use a checkbox for "I agree" instead of two radio buttons

for "I agree" and "I don't agree."

selectWhen the user can select multiple options, use a checkbox or control instead.

Use radio button when you want to draw attention to the selection options by making them all

visible. If the default option is recommended for most users in most situations, radio buttons

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

170

might draw more attention to the options than necessary. If you don't want to call attention to

the options or need to save space, use a drop-down list (the select control) instead.

For example, use a drop-down list instead of radio buttons to display available screen

resolutions because the user only cares about the current resolution.

Don't use radio buttons when the options are numbers that have fixed steps, like 10, 20, and 30.

Use a slider control instead.

Dos and don'ts

Do

Enclose the radio button in a label element so that tapping the label selects the

radio button. Enclosing the radio button in a label makes it more accessible to touch

users. Place the label text after the radio button control.

Place the radio button's label text after the radio button, not before or above it.

Don't

Don't put more than eight options in a radio button group. Because the screen

space used is proportional to the number of options, keep the number of options in a

group between 2 and 7. When you need to present more options, use a select control

as a drop-down list or a ListView instead.

Don't put two radio button groups next to each other. When two radio button

groups are right next to each other, it's difficult to determine which buttons belong to

which group. Use group labels to separate them.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

171

Guidelines for the Select control

With the select control users can select a value, or multiple values, from a set of items with text

labels. The select control has two modes of operation: drop-down list mode and list box mode.

Is this the right control?

Use the select control to let users select one or more values from a set of items that can be

adequately represented using single lines of text.

selectDon't use the control to display items that contain multiple lines of text or images. Use a
ListView instead.

When there are fewer than eight items, consider using radio buttons (if only one item can be

selected) or check boxes (if multiple items can be selected) instead.

Choose the right mode

selectThe control has two modes: Drop-down list mode and List box mode.

When to use the drop-down list mode

In this mode, the select control conserves on-screen space by showing only the currently-

selected item.

Users must tap a faceplate, which opens a drop-down, to see other selectable items. Users can

select only one item in this mode.

 Use this mode when the selection items are of secondary importance in the flow of your

app.

In some situations, showing all the items by using the list box mode draws more

attention to the options than necessary. You can save space and minimize distraction by

using the drop-down list mode.

 Use this mode when you need to save space.

Use the select control’s drop-down list mode to conserve on-screen real estate. The

drop-down list mode lets you provide users with various choices, but uses a small

footprint.

When to use the list box mode

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

172

In this mode, the select control is always open and displays all its items without any additional

interaction. This mode supports both single selection and multiple selections.

When using this mode, set the select control's size so that it is large enough to display all its

items without requiring the user to pan or scroll.

 Use this mode when there are fewer than 10 items and the items are important enough

to display prominently.

 Use this mode for multi-selection.

If there are fewer than 10 items and they should be prominently displayed, use the list

box mode. If you have more than ten items and want to enable multi-selection, use a

ListView.

selectHere's an example of an appropriate use of the control in list box mode:

In this ticket ordering app, there are only a handful of ticket types. They are simple items, but

they’re also an important aspect of the app itself. By using the inline mode, the selectable

options are visible at all times.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

173

Guidelines for sliders

Is this the right control?

Use a slider when you want your users to be able to set defined, contiguous values (such as

volume or brightness) or a range of discrete values (such as screen resolution settings).

A slider is a good choice when you know that users think of the value as a relative quantity, not

a numeric value. For example, users think about setting their audio volume to low or medium—

not about setting the value to 2 or 5.

toggle switchDon't use a slider for binary settings. Use a instead.

Here are some additional factors to consider when deciding whether to use a slider:

 radio selectDoes the setting seem like a relative quantity? If not, use buttons or

controls.

 Is the setting an exact, known numeric value? If so, use a numeric text box.

 Would a user benefit from instant feedback on the effect of setting changes? If so,

use a slider. For example, users can choose a color more easily by immediately seeing

the effect of changes to hue, saturation, or luminosity values.

 radio buttonsDoes the setting have a range of four or more values? If not, use .

 Can the user change the value? Sliders are for user interaction. If a user can't ever

change the value, use read-only text instead.

If you are deciding between a slider and a numeric text box, use a numeric text box if:

 Screen space is tight.

 The user is likely to prefer using the keyboard.

Use a slider if:

 Users will benefit from instant feedback.

Choosing the right layout: horizontal or vertical

You can layout your slider horizontally or vertically. Use these guidelines to determine which

layout to use.

 Use a natural orientation. For example, if the slider represents a real-world value that is

normally shown vertically (such as temperature), use a vertical orientation.

 If the control is used to seek within media, like in a video app, use a horizontal

orientation.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

174

 When using a slider in page that can be panned in one direction (horizontally or

vertically), use a different orientation for the slider than the panning direction. Otherwise,

users might swipe the slider and change its value accidentally when they try to pan the

page.

 If you're still not sure which orientation to use, use the one that best fits your page

layout.

Guidelines for the range direction

The range direction is the direction you move the slider when you slide it from its current value

to its max value.

 For vertical slider, put the largest value at the top of the slider, regardless of reading

direction. For example, for a volume slider, always put the maximum volume setting at

the top of the slider. For other types of values (such as days of the week), follow the

reading direction of the page.

 For horizontal styles, put the lower value on the left side of the slider for left-to-right

page layout, and on the right for right-to-left page layout.

 The one exception to the previous guideline is for media seek bars: always put the lower

value on the left side of the slider.

Guidelines for steps and tick marks

 step minUse points if you don't want the slider to allow arbitrary values between and

max. For example, if you use a slider to specify the number of movie tickets to buy,

don't allow floating point values. Give it a step value of 1.

 If you specify steps (also known as snap points), make sure that the final step aligns to

the slider's max value.

 Use tick marks when you want to show users the location of major or significant values.

For example, a slider that controls a zoom might have tick marks for 50%, 100%, and

200%.

 Show tick marks when users need to know the approximate value of the setting.

 Show tick marks and a value label when users need to know the exact value of the

setting they choose, without interacting with the control. Otherwise, they can use the

value tooltip to see the exact value.

 Always show tick marks when step points are obvious. For example, if the slider is 200

pixels wide and has 200 snap points, you can hide the tick marks because users won't

notice the snapping behavior. But if there are only 10 snap points, show tick marks.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

175

Guidelines for labels

Slider labels

The slider label indicates what the slider is used for.

 Use a label with no ending punctuation.

 Position labels above the slider when the slider is in a form that places its most of its

labels above their controls.

 Position labels to the sides when the slider is in a form that places most of its labels to

the side of their controls.

 Avoid placing labels below the slider because the user's finger might occlude the label

when the user touches the slide.

Range labels

The range, or fill, labels describe the slider's minimum and maximum values.

 Label the two ends of the slider range, unless a vertical orientation makes this

unnecessary.

 Use only one word, if possible, for each label.

 Don't use ending punctuation.

 Make sure these labels are descriptive and parallel. Examples: Maximum/Minimum,

More/Less, Low/High, Soft/Loud.

Value labels

A value label displays the current value of the slider.

 If you need a value label, display it below the slider.

 Center the text relative to the control and include the units (such as pixels).

Dos and don'ts

Do

Size the control so that users can easily set the value they want. For settings with

discrete values, make sure the user can easily select any value using the mouse.

Give immediate feedback while or after a user makes a selection (when

practical). For example, the Windows volume control beeps to indicate the selected

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

176

audio volume.

Use labels to show the range of values. Exception: If the slider is vertically oriented

and the top label is Maximum, High, More, or equivalent, you can omit the other

labels because the meaning is clear.

Disable all associated labels when you disable the slider.

Don't

Don't use a slider as a progress indicator.

Don't change the size of the slider thumb from the default size.

Don't create a continuous slider if the range of values is large and users will most

likely select one of several representative values from the range. Instead, use those

values as the only steps allowed. For example if time value might be up to 1 month

but users only need to pick from 1 minute, 1 hour, 1 day, or 1 month, then create a

slider with only 4 step points.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

177

Guidelines for toggle switches

The toggle switch mimics a physical switch that allows users to turn things on or off. The control

has two states: on and off. Use these guidelines when adding toggle switch controls to your
Windows Store app.

Is this the right control?

Use a toggle switch for binary operations that become effective immediately after the user

changes it. For example, use a toggle switch to turn services or hardware components on or off.

A good way to test whether you should use toggle switch is to think about whether you would

use a physical switch to perform the action in your context.

After the user toggles the switch on or off, you perform the corresponding action immediately.

Choosing between toggle switch and check box

In some cases, you could use either a toggle switch or check box. Follow these guidelines to

choose between the two.

 Use a toggle switch for binary settings when changes become effective immediately after

the user changes them.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

178

It's clear in the toggle switch case that the wireless is set to on. But in the checkbox case, users

need to think about whether the wireless is on now or whether they need to check the box to

turn wireless on.

 Use a checkbox when the user has to perform extra steps for changes to be effective. For

example, if the user must click a "submit" or "next" button to apply changes, use a check

box.

 ListViewUse check boxes or a when the user can select multiple items:

Dos and Don'ts

Do

Replace the On and Off labels when there are more specific labels for the setting.

If there are short (3-4 characters) labels that represent binary opposites that are more

appropriate for a particular setting, use them. For example, you might use

"Show/Hide" if the setting is "Show images." Using more specific labels can help when

localizing the UI.

Don't

Don't replace the On or Off label unless you must. Use the default labels unless

there are labels that are more specific for the setting.

Don't use labels longer than 3 or 4 characters.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

179

Guidelines for the Rating control

The Rating control lets users rate something by clicking an icon that represents a rating. It can

display 3 types of ratings: an average rating, a tentative rating, and the user's rating. Use these

guidelines when adding Rating controls to your Windows Store app.

Is this the right control?

The Rating control lets users rate something by clicking an icon that represents a rating. It can

display three types of ratings: an average rating, a tentative rating, and the user's rating.

Use the rating control to show the degree to which users like, appreciate, or are satisfied with an

item or service. For example, use the rating control to let users rate a movie. Don't use it for

other types of data that have a continuous range, such as screen brightness (use a slider for

that).

Don't use the rating control as a filter control. For example, if you want to let users filter search

results to show restaurants with five stars, use a slider. Using the ratings control could mislead

users into thinking that they are giving a new rating to the restaurant.

Don't use a one-star rating control as a like/dislike control. Use a check box instead. The rating

control is not designed for a binary rating, for example, tapping on the control doesn't toggle

the star on and off.

Dos and don'ts

Do

Use tooltips to give users more context. You can customize the tooltip to show

more meaningful words for each star, like "excellent, "very good," or "not bad," as

shown here:

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

180

Disable the rating control when you want to prevent the user from adding or

modifying the rating. A disabled rating control continues to display the rating (if one

is set), but doesn't allow the user to add or modify it. If you want to restrict ratings to

logged-in users, you can disable the rating control. When users tap the control, you

can send them to a log-in page.

If the control cannot be enabled (it is read-only for the life of the app), make it smaller

than other rating controls by setting the class attribute of the control host element to

"win-small". Making the control smaller helps distinguish it from the other controls

and also discourages interaction.

Show the average rating and user rating at the same time. After the user provides

a rating, the rating control displays the user's rating instead of the average rating.

Whenever it's meaningful to your users, show them the average user rating in addition

to their rating. Here are two ways you can display average rating:

 Display the average in an accompanying text string (such as "average: 3.5").

 Use two rating controls together, one to show the user rating, and one that

shows the average rating and doesn't allow user input.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

181

Don't

Don't change the default number of stars (the max rating) unless you must. By

default, the rating control has 5 stars, with 1 being the lowest or worst rating and 5

being the highest or best. If your app follows this convention, it will be easy for users

to interpret what the rating means.

Don't disable the "Clear your rating" feature unless you must prevent users from

deleting their ratings.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

182

Guidelines for progress controls

progressFollow these guidelines for adding controls to your Windows Store app.

Is this the right control?

The progress control shows users the progress of an operation that takes more than 2 seconds

to complete. A progress control can show an approximate percentage of completion

(determinate progress), or indicate that an operation is ongoing (indeterminate progress).

It's not always necessary to show a progress control; sometimes a task's progress is obvious

enough on its own or the task completes so quickly that showing a progress control would be

distracting. Here are some points to consider when you determine whether you should show a

progress control.

 Does the operation take more than two seconds to complete?

If so, show a progress control as soon as the operation starts. If an operation takes more

than two seconds to complete most of the time, but sometimes completes in under two

seconds, wait 500ms before you show the control. This avoids flickering.

 Is the operation waiting for the user to complete a task?

If so, don't use a progress bar. Progress bars are for computer progress, not user

progress.

 Does the user need to know that something is happening?

For example, if the app is downloading something in the background, and user didn’t

initiate the download, the user doesn’t need to know about it.

 Is the operation a background activity that doesn't block user activity and is of minimal

(but still some) interest to the user?

Use text and ellipses when your app is performing tasks that don't have to be visible all

the time, but you still need to show the status.

Use the ellipses to indicate that the task is ongoing. If there are multiple tasks or items,

you can indicate the number of remaining tasks. When all tasks complete, dismiss the

indicator.

 Can you use the content from the operation to visualize progress?

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

183

If so, don't show progress control. For example, when displaying images loaded from the

disk, images appear on the screen one-by-one as they are loaded. Displaying progress

control would provide no benefit. It would clutter the UI.

Don't use the "wait cursor" to indicate activity. Users who use touch to interact with the

system won't see it. Users who use the mouse don't need two ways to visualize activity

(the cursor and the progress control).

Choosing the right type of progress control style

There are 3 progress control styles:

 The determinate progress bar style

Use the determinate progress bar style when a task is determinate, that is when it has a

well-defined duration or a predictable end. Here are some examples of determinate

tasks:

 The app is downloading a 500k photo and has received 100k so far.

 The app is displaying a 15 second advertisement and 2 seconds have elapsed. If

the task is not determinate, use the indeterminate progress bar or ring.

 The indeterminate progress ring style

Use this style for tasks that are not determinate and are modal (block user interaction).

 The indeterminate progress bar style

Use this style for tasks that are not determinate that are non-modal (don't block user

interaction).

Treat partially modal tasks as non-modal. Some tasks block interaction until some progress has

been made, and then user can start interacting with the app again. For example, when the user

performs a search query, interaction is blocked until the first result is displayed. Treat tasks such

as these as non-modal and use the indeterminate progress bar style if modal state lasts less

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

184

than 2 seconds. If modal state can last more than 2 seconds, use indeterminate progress ring for

the modal phase of the task, and use the indeterminate progress bar for the non-modal phase.

General guidelines

Here are some general guidelines to follow, regardless of which progress control style you use.

 Show a single progress control for multiple active related tasks. If there are multiple

related items on the screen that are all simultaneously performing some kind of activity,

don't show multiple progress controls. Instead, show one that ends when the last task

completes. For example, if the app downloads multiple photos, show a single progress

control, instead of showing one for every photo.

 Don't change the location or size of the progress control while the task is running.

Guidelines for determinate tasks

If you can estimate remaining amount of work in time, bytes, files, or some other quantifiable

units of measure, use a determinate progress bar. Here are some guidelines for using the

determinate progress bar.

Switching from indeterminate to determinate

If some time (or action) is needed to start

providing determinate progress, use the

indeterminate bar first, and then switch to the

determinate bar.

For example, if the first step of a download task

is connecting to a server, you can’t estimate

how long that takes. After the connection is

established, switch to the determinate progress

bar to show the download progress. Keep the

progress bar in the same place and with the

same size after the switch.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

185

Showing progress and status inline

Suppose you have a list of items, such as a list

of printers, and certain actions can initiate an

operation on items in that list (such as installing

a driver for one of the printers). When this

happens and the operation is determinate,

show a determinate progress bar next to the

item.

Show the subject (label) of the task above the

progress bar and status underneath. Don’t

provide status text if what's happening is

obvious. After the task completes, hide the

progress bar. Use the status text to

communicate the new state of an item.

Showing multiple operations

When you want to show a list of tasks, align the

content in a grid so users can see the status at a

glance. Show progress bars for all items, even

those that are pending.

Because the purpose of this list is to show

ongoing operations, remove operations from

the list when they complete.

Showing app-modal determinate progress in

the app bar

If a user initiated a task from the app bar and it

blocks user interaction, show the progress

control in the app bar.

If it's clear what the progress bar is showing

progress for, you can align progress bar to the

top of the app bar and omit the label and

status; otherwise, provide a label and status

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

186

text.

Disable interaction during the task by disabling

controls in the app bar and ignoring input in

the content area.

Dos and don'ts for determinate tasks

Do

If the operation is modal (blocks user interaction), and takes longer than 10 seconds,

provide a way to cancel it.

Space progress updates evenly. Avoid situations where progress increases to over 80%

and then stops for a long period. You want to speed up progress towards the end, not

slow it down. Avoid drastic jumps, such as from 0% to 90%.

After setting progress to 100%, wait until the determinate progress bar finishes

animating before hiding it.

If your task is stopped (by a user or an external condition), but a user can resume it,

visually indicate that progress is paused by using the win-paused CSS style. Provide

status text under the progress bar that tells the user what's going on.

If the task is stopped and can’t be resumed, or it must be restarted from scratch, visually

indicate that there's an error by using the win-error CSS style. Replace the status text

(underneath the bar) with a message that tells the user what happened and how to fix

the issue (if possible).

Don't

Don’t decrement progress. Always increment the progress value. If you need to

reverse an action, show the progress of reversal as you would show progress of any

other action.

Don’t restart progress (from 100% to 0%), unless it’s obvious to the user that a

current step or task is not the last one. For example, suppose a task has two parts:

downloading some data, and then processing and displaying the data. After the

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

187

download is complete, reset the progress bar to 0% and begin showing the data

processing progress. If it’s unclear to users that there are multiple steps in a task,

collapse the tasks into a single 0-100% scale and update status text as you move from

one task to the next.

Guidelines for indeterminate tasks

If the task is modal—it blocks interaction until its completion—use the indeterminate progress

ring style. If the task is not modal, use the indeterminate progress bar style.

Indeterminate progress ring

Follow these guidelines for displaying the progress ring:

 Display the progress ring in the context of the action: show it near the location where the

user initiated the action or where the resulting data will display.

 Provide status text to the right of the progress ring.

 Make the progress ring the same color as its status text.

 Disable controls that user shouldn’t interact with while the task is running.

 If the task results in an error, hide the progress indicator and status text and display an

error message in their place.

Here are some guidelines for specific situations that involve the progress ring.

In a dialog, an action

occurs before you move

to the next screen

Place the progress ring

just above the button

area, left-aligned with

the content of the

dialog.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

188

Showing progress in an

app window with right-

aligned controls

Place the progress ring

to the left or just above

the control that caused

the action. Left-align the

progress ring with

related content.

Showing progress in an

app window with left-

aligned controls

If a control that starts

the modal action is

aligned to the left, place

the progress ring to the

right of that control. Or

you can place it

underneath the control.

- or -

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

189

Showing progress in a

flyout

Use a flyout if activity

can proceed in the

background when the

user dismisses the flyout

by tapping outside it.

Showing multiple items

Place the progress ring

and status text

underneath the title of

the item. If an error

occurs, replace the

progress ring and status

with error text.

Indeterminate progress bar

Use indeterminate progress bar for tasks that don't block user interaction (non-modal).

Here are some guidelines for specific indeterminate progress bar situations.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

190

Showing progress in a flyout

Place the indeterminate progress bar

at the top of the flyout and set its

width so that it spans the entire flyout.

This placement minimizes distraction

but still communicates ongoing

activity. Don't give the flyout a title,

because a title prevents you from

placing the progress bar at the top of

the flyout.

In an app window

Place the indeterminate progress bar

at the top of the app window,

spanning the entire window.

Guidelines for status text

 When you use the determinate progress bar, don’t show the progress percentage in the

status text. The control already provides that info.

 If you use text to indicate activity without a progress control, use ellipsis to convey that

the activity is ongoing.

 If you use a progress control, don't use ellipsis in your status text, because the progress

control already indicates that the operation is ongoing.

Layout patterns

Here are layout guidelines for several common patterns of progress control usage.

 Determinate progress bar with label and status

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

191

 Multiple progress bars

 Indeterminate progress ring with status text

 Indeterminate progress bar

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

192

Guidelines for tooltips

Is this right control?

A tooltip is a short description that is linked to another control or object. Tooltips help users

understand unfamiliar objects that aren't described directly in the UI. They display automatically

when the user presses and holds or hovers the mouse pointer over a control. The tooltip

disappears when the user moves the finger, the mouse pointer, or a pen pointer.

Use a tooltip to reveal more info about a control before asking the user to do something. You

can also use a tooltip to show the item under the finger during touchdown, so that users know

where they are touching. (You should try to find other ways to disambiguate first, such as use a

larger control, more spacing, or styling the control's active/hover state.)

When should you use a tooltip? To decide, consider these questions:

 Is the info displayed based on pointer hover?

If not, use another control. Display tips only as the result of user interaction—never

display them on their own.

 Does a control have a text label?

If not, use a tooltip to provide the label. It is a good programming practice to label most

controls and for these you don't need tooltips. Toolbar controls and command buttons

with graphic labels need tooltips.

 Does an object benefit from a more detailed description or further info?

If so, use a tooltip. But the text must be supplemental—that is, not essential to the

primary tasks. If it is essential, put it directly in the UI so that users don't have to discover

or hunt for it.

 Is the supplemental info an error, warning, or status?

If so, use another UI element, such as a flyout.

 Do users need to interact with the tip?

If so, use another control. Users can't interact with tips because moving the mouse

makes them disappear.

 Do users need to print the supplemental info?

If so, use another control.

 Will users find the tips annoying or distracting?

If so, consider using another solution—including doing nothing at all. If you do use tips

where they might be distracting, allow users to turn them off.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

193

Here are some examples of good ways to use tooltips:

 Showing the day of the week when users touch a date in a calendar.

 Showing a preview of the linked website when users touch a hyperlink.

Dos and don’ts

Do

Keep the tooltip text concise. Tooltips are perfect for short sentences and sentence

fragments. Large blocks of text are difficult to read and overwhelming.

Create helpful, supplemental tooltip text. Tooltip text must be informative. Don't

make it obvious or just repeat what is already on the screen. Because tooltip text isn't

always visible, it should be supplemental info that users don't have to read.

Communicate important info by using self-explanatory control labels or in-place

supplemental text.

Use images when appropriate. Sometimes it's better to use an image in a tooltip.

For example, when the user touches a hyperlink, you can use a tooltip to show a

preview of the linked page.

Don't

Don't use a tooltip to display text already visible in the UI. For example, don't put

a tooltip on a button that shows the same text of the button unless touching the

button blocks its text.

Don't put interactive controls inside the tooltip.

Don't put images that look like they are interactive inside the tooltip.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

194

Guidelines for FlipView controls

The FlipView control lets people flip through views in an app or through a collection of items,

like photos in a photo album, one at a time. It offers people a way to look at each individual

item while navigating through the collection.

Is this the right control?

The FlipView control lets people flip through views or items one at a time. Flip buttons appear

on mouse hover and let people flip to the next or previous item.

You can also add a context indicator control so users can jump directly to a particular item.

FlipViewUse a control to:

 Flip between items in a small collection (< 10) of related items

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

195

For example, in a shopping app, you might want to show several images of a product in

a product details page. You can use the context indicator control for a small collection,

but this is often not necessary.

 Flip between items in a medium-sized list (10 to 25) of related items

For example, in a real estate app, you might want to show a number of images of each

house, showcasing the rooms and views. For these medium-sized lists, include a context

indicator control, like a filmstrip of thumbnails, that lets users to jump to specific photos.

 Flip between views of an app

For example, an app launcher can have one view that shows a user's favorites in a grid

and another that shows the favorites in a list. You can add a FlipView control to let users

navigate from one view to another.

Don't use a FlipView control for large collections. The repetitive motion of flipping through

each item becomes tedious for users. A ListView control is a better choice.

Dos and Don'ts

Do

Use a context indicator when the items in the collection don't provide enough

contextual information to help users know where they are in the collection. A FlipView

for days of the week would not need a context indicator, whereas a FlipView for

product images would.

Give users an indication of where the current item is in the collection. Use a

context indicator to help users know how large the collection is and where the current

item is in relation to the others in the collection.

Tailor the indicator for the number of items and the specific scenario. For small

collections, you can show the entire collection in the context indicator. For medium-

sized collections, you might want to show only 5 at a time, for example. For purely

visual collections, you might display thumbnails; for text-based collections, you might

prefer to display the alphabet so users can jump to the right letter.

Allow users to jump to specific items. Make sure you always help users feel in

control of where they are and where they want to go.

Don't Don't use a FlipView for large collections. Use a ListView instead.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

196

Guidelines for ListView controls

Is this the right control?

The ListView control offers a way to present collections of data, referred to as “items”, to users of

your app. You can use ListView to produce various layouts, but it may not necessarily be the

best option.

Here are some points to consider when determining whether you should use a ListView control.

 How are lists of items organized?

Use ListView for apps that show a list of items as tiles, such as television shows, music,

books, or emails. Visually you can display items in groups and variable-sized items within

a group, and interactively there is full touch support, including semantic zoom.

ListView is for items that expose multiple pieces of data, such as a picture with an overlay

and a textual description. If your items are just a set of short strings, consider using the

Select control.

Don’t use ListView to display one large item per screen. For items where the user is

meant to dwell on each item one-at-a-time, use a FlipView control instead.

 Is the number of columns within one category, fixed? Or does it vary based on the data

and can be large?

Although ListView offers a number of formatting features, is not meant to be used solely

for layout. ListView is used to manage items that are fed by a common data source, and

share some level of common interaction such as being selectable or tappable.

 Is the number of groups fixed or can it grow based on data?

The more the number of items is dynamic, the more it makes sense to use ListView. The

less dynamic they are, that is, the number is fixed, the less it makes sense and a simple

template would be better.

The interaction model

It is helpful to think about what the purpose of your ListView is. Once this is established, setting

the interaction model is easier. ListViews are generally used for one of the following purposes:

Static mode In this mode, the ListView is acting solely as a way to present content, and most

types of interactivity are disabled. This is useful for collections of items that are read-only, and

cannot be even activated or navigated into.

Content library mode This mode should be used when displaying a collection, or library, of

content. It is typically used when presenting media such as pictures and videos.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

197

In a Content Library, the primary user action is to tap on an item to invoke an action. Some (if

not most) content libraries will also support the selection of items, using a new touch gesture we

call cross slide.

Split view mode In this mode, tapping an item in the overview pane changes what is displayed

in the details pane.

Picker mode is best used when the primary user action is selection (and the ability to invoke

an item on tap is not important). In this interaction model, tap is used for selection in addition to

cross-slide.

Choosing the right type of ListView control style

The ListView comes with two “layouts” built into the control: list layout, and grid layout.

List layout

List Layouts are single-column only with a top to bottom reading order, and they always pan or

scroll vertically. List Layouts do not support item grouping.

Use the List Layout if the ListView is not the primary focus of your app.

For example, in common email apps, you’ll often see a bunch of folders on the left side of the

screen. This is a good candidate for a List Layout form of ListView.

Grid layout

The grid layout always pans horizontally, and items are laid out following a top-to-bottom, then

left-to-right reading order. Grid layout supports item grouping.

Use the Grid Layout if the ListView is the primary point of focus in your app.

For example, a media rental app that displays movies should use a Grid Layout on its main

screen, since the movie list is the primary point of focus of the app.

Dos and don'ts for list layout

Do

ListView is intended for items that expose multiple pieces of data. If your items are just a

set of short strings, consider using the Select control.

Guidelines for grid layout

Use the Grid Layout if the ListView is the primary point of focus in your app and you want to

emphasize content over all other things on the screen. The grid layout is useful for the following:

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

198

 Use grouping to organize collections of items

There are two main situations where grouping is beneficial in a Grid Layout: when the

collection of items becomes large, and/or when the items are naturally grouped—such

as when viewing a collection of songs grouped into various albums.

Grouping organizes the collection, and enables users to better find their way around.

 Use static mode to present content with no interactivity

In this mode the ListView is acting solely as a way to present content, and most types of

interactivity are disabled. This is useful for collections of items that are read-only, and

cannot be even activated or navigated into.

 Use content library mode to display collections of content.

This mode should be used when displaying a collection, or library, of content. It is

typically used when presenting media such as pictures and videos.

In a Content Library, the primary user action is to tap on an item to invoke an action.

Some (if not most) content libraries will also support the selection of items, using a new

touch gesture we call cross slide.

 Use the picker mode for user selection

Picker Mode is best used when the primary user action is selection, and the ability to

invoke an item on tap is not important. In this interaction model, tap is used for selection

in addition to cross-slide.

Dos and don'ts for grid layout

Do

If possible, size the grid so that it takes up the full screen width. This places greater

emphasis on the content.

Size the content items so that they are easy to interact with touch.

When you display images in your grid, generously size the items to allow those images

to be clearly visible.

Limit the amount of additional UI built around the grid, such as extra buttons. Some

additional UI is fine, but overwhelming numbers of buttons can be distracting.

When your grid contains many items, consider using the Semantic Zoom control. The

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

199

Semantic Zoom control is a transport control that allows users to zoom in and out of

larger areas of UI, such as a very wide ListView. Use Semantic Zoom to assist users in

navigating ListViews with large numbers of items.

General guidelines

Here are some general guidelines to follow, regardless of which list view control you use.

 Do not use ListView primarily for layout

Although ListView offers some nice layout features, it is intended to manage a set of

related items that are related by data source and interactivity. Items that aren’t a part of

a list, but rather discrete blocks of content that you want in the overall layout region are

best displayed by using other layout options.

 Consider managing large amounts of hierarchical ListView content with Sematic Zoom

For an app that contains many categories, with many items under each category, and

where each category may contain different content types, semantic zoom is useful in

managing the amount of content and categories in these views.

One example of this is the people picker app. It is laid out like the below, where the

alphabet list is one ListView, and favorites is laid out separately.

 Use a ListView to expose app content, not commands

It is appropriate to put buttons inside of ListView items; however, don’t use a ListView to

expose a toolbar of buttons for Cut / Copy / Paste. In this case it is better just to use a

bunch of Button controls laid out side-by-side.

 Suppress selection checkmarks in single-selection scenarios

For list and grid items a checkmark should be suppressed where there is only a single-

selection.

 Follow the Windows 8 type and layout grid

Windows 8 features and apps follow a common type and layout grid that provides a

consistent personality throughout the system—more details about this can be found

here. Your ListView should present items that are sized and aligned to this type and

layout grid. There are three ways you can ensure that this is done correctly:

 You can use a set of pre-defined item templates that are properly designed to do

this. These item templates can be retrieved here.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

200

 You can use a Visual Studio Project Template with a ListView in Grid Layout

already included in the app.

 Finally, if neither of these options works for you, you can read the article on the

type and layout grid, and once fully understood, create your own item templates.

Managing the ListView layout when going to a snapped view

In Windows 8, apps can be snapped, which limits their width to 320px. Likewise, when

unsnapped, the width of the app is much greater, allowing more and more content to be shown.

Use the following guidance to help you determine what your ListView should do in these

situations:

 If your ListView’s content is not central to your app, consider using a Select control in the

snapped view.

For example, if your ListView contains a bunch of categories that a user can select from,

but those categories are not the primary content of your app, might consider using a

select control in the snapped view. The select control only supports a simplistic visual

rendering of items, but if your content is not important, then this de-emphasis is

appropriate.

 If your ListView’s content is critical even in the snapped view, then switch between grid

layout and list layout when your app is snapped / unsnapped.

This allows your ListView’s contents to be emphasized even when in the snapped state.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

201

Guidelines for file pickers

Follow these guidelines to customize the file picker when you access and save files and folders.

They also apply when you use the file picker to provide files, a save location, or file updates for

other apps.

Appropriate use of file pickers in apps

 Access files and folders.

Add a control to your app that calls the file picker to let the user pick files for your app to

operate on. The user can then pick files through the file picker's UI as shown in the

screen shot.

The user can pick files from any location (including from other apps) that is listed in the

drop-down list at the upper left in the file picker letterbox.

 Add "save as" to your app.

Add a control to your app's UI that calls the file picker so that the user can specify the

name, file type, and/or save location (like another app) of the file to save. The user can

then navigate and save their file through the file picker's UI, as shown in the screen shot.

Learn more about calling the file picker to save a file in How to save files through file

pickers.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

202

Inappropriate use of file pickers in apps

 Don't use the file picker to explore, consume, or manage file content.

Instead, we recommend that you let users explore, consume, and/or manage file content

by creating dedicated pages and UI in your app. This helps users focus on their current

task and helps ensure that when users pick files, their experience is uncluttered by

unnecessary functionality.

For example, a photo gallery app should provide a customized, dedicated page and UI

that lets users organize and view picture files within the app. The app can then customize

this UI to best suit the user’s needs. When the user wants to add files to the gallery, it

would call the file picker which provides an experience that is specialized for picking.

 Don't use the file picker to save a file if a unique, user-specified file name or location is

not needed.

If the user doesn't have to specify a file name, file type, or location to save to, we

recommend that your app save the file automatically in the background (without

launching a file picker). This helps eliminate unnecessary user interaction, making the

process of saving a file faster and less intrusive.

User experience guidelines: accessing and saving files and folders

 Set the file types to ensure that users can pick or save only file types that your app can

handle.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

203

Whether picking or saving files and folders, customize the file picker to display only the

file types that your app supports and that are relevant to the user’s current task. For

example, if the user is picking or saving a video, set the file types so that the user can

select or save only a video file that uses a format that your app can handle.

This also applies to folder picking where the user is using files displayed in the file picker

to help them determine which folder to select. By filtering the view to the proper file

type, you help the user identify the correct folder faster.

 When accessing files or folders, set the view mode based on the kinds of items that the

user is picking from.

ThumbnailFor example, if the user is picking pictures or videos, set the view mode to .

If the user is picking any other kind of files or folders, set the view mode to
PickerViewMode.List.

 Set the commit button text to match the user's current task.

Whether picking or saving files and folders, customize the file picker by setting the

commit button text appropriately for the user's current task. For example, if the user

wants to pick a set of files to upload to your app, set the commit button text to

"Upload".

 Set the suggested start location to the most relevant location possible based on the

user's current task.

Whether picking or saving files and folders, customize the file picker to suggest the most

relevant start location possible based on the user's current task and the list of possible

start locations provided by the PickerLocationId enumeration. For example, if the user

is picking pictures, you may want to set the suggested start location to the user’s

Pictures library.

 When accessing files, let the user pick a single file or multiple files based on the current

task.

For example, if the user is picking a profile picture, call the file picker for picking a single

file. If the user is picking photos to send to a friend, call the file picker for picking

multiple files.

 When saving files, set a default file name for the file to save.

If users accept the default file name that you provide, they don't have to take the time to

enter a different name and they can complete the "save as" task faster. You can use the

FileSavePicker.SuggestedFileName property to set the default file name.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

204

Guidelines for find-in-page

The following table presents the practices recommended for implementing find-in-page.

Practice Description

Implement find-in-page

to enable people to find

matches in the current

body of text.

Find-in-page enables people to find matches in the current body

of text.

 Document viewers and readers are the most likely type of

apps to provide find-in-page.

 The primary purpose of these apps is to enable the user to

have a full screen viewing/reading experience.

 Find-in-page functionality is secondary and should be

located in an app bar along other functionality provided for

the user which they will use when needed.

Don't use the Search

charm to find text in the

current body of text.

Apps that use the Search charm provide an experience which

searches over a set of items, like web pages, movies, and events.

The user enters a query into the search box, and a related result set

is returned. Often, these results are sorted by using a relevance

algorithm.

User experience guidelines

The following table presents the practices recommended for adding find-in-page to an app.

Practice Description

Use an app bar to let

people find text with your

app.

Find-in-page functionality is secondary and should be located in

an app bar.

 Apps that provide find-in-page should have all necessary

controls in an app bar.

 If your app includes a lot of functionality beyond find-in-

page, you can provide a Find button in the top-level app

bar as an entry point to another app bar that contains all

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

205

of your find-in-page controls.

The find-in-page app bar

should remain visible

when interacting with the

touch keyboard.

The touch keyboard appears when a user taps the input box. The

find-in-page app bar should move up, so it's not occluded by the

touch keyboard.

Find-in-page should

remain available while the

user interacts with the

view.

People need to interact with the in-view text while using find-in-

page. For example, people may want to zoom in or out of a

document or pan the view to read the text. Once the user starts

using find-in-page, the app bar should remain available with a

Close button to exit find-in-page.

Enable the keyboard

shortcut (CTRL+F).

Implement the keyboard shortcut CTRL+F to enable the user to

invoke the find-in-page app bar quickly.

Include the basics of find-

in-page functionality.

These are the UI elements that you need to implement find-in-

page:

 Input box

 Previous and Next buttons

 A match count

 Close

The view should highlight

matches and scroll to

show the next match on

screen.

People can move quickly through the document by using the

Previous and Next buttons and by using scroll bars or direct

manipulation with touch.

Find-and-replace

functionality should work

alongside the basic find-

in-page functionality.

For apps that have find-and-replace, ensure that find-in-page

doesn't interfere with find-and-replace functionality.

Avoid summary panes. Summary panes are duplicative and should not be included in

find-in-page functionality.

TOUCH, COMMANDING, AND CONTROLS

Controls

© 2012 Microsoft. All rights reserved. | August 14, 2012

206

 The easiest way for a user to identify the match they are

looking for is to see it in the document, because seeing

the match inline gives much more context than a

summary of results pane.

 People can move quickly through the document by using

the Previous and Next buttons and by using scroll bars

or direct manipulation with touch.

 If you choose to include a summary pane, people should

be able to access it by using a toggle button.

 When the summary pane is toggled on, it should be

visible whenever text is in the input box.

 If the user closes the find-in-page app bar, then the

summary pane should not be visible until the next time

that the user enters text in the input box.

 If the summary pane is toggled off it should not show

again until the user toggles it back to the on state.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

207

Charms, contracts, and devices

Guidelines for sharing content

People often come across information they’re excited to share with someone or use in another

app. The share charm is a lightweight, in context, easy way to share stuff. Follow these guidelines

to let your users share content from your app with other people or apps, and receive shared

content.

When people swipe from the side of the screen

and tap the share charm, the share pane appears

with a list of apps people can share their content

with. This list includes any apps that are “share

targets” for a particular data format.

If your app has content to share, your app is a

share source. If your app can receive content

from other apps, then it’s a share target. Of

course, apps can be both at once!

Note: If your app is both source and target for a

particular data format, then it appears by default

in the list of share targets each time people

share from your app. Sometimes this is great,

and sometimes it’s a little silly to share with

yourself. If it’s silly, then display an error

message that prompts the user to select a

different target app.

When people choose to share content, source

apps provide the requested content in a

shareable format, and display the metadata in

the content preview. The chosen target app

launches, reads the shared content, and displays

whatever UI is appropriate.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

208

When the target app reports that the sharing

operation has completed, it can return a

QuickLink to be displayed in the share pane.

User experience with lengthy operations

Many sharing operations can take time to complete. People can start sharing a large amount of

content and, while that is ongoing, they can switch to another app. Then, they can check the

progress of the share operation by re-opening the share window.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

209

If a sharing operation fails, Windows displays an informative message from the target app with

steps to correct the problem when possible.

Best practices

We expect most, if not all, Windows Store apps to support some share tasks. Use the following

best practices as you implement sharing in your app.

Source apps

 When possible, include links to online versions of local content.

If an app supports downloading content that is also available to everyone on the web, it

could share links to the online content rather than copies of the downloaded content.

For example, suppose that a news site provides a rich reader app but also publishes the

same articles on the website. If a user wants to share an article with a social networking

site, the reader app can share links to the online version of the article that the user is

currently viewing.

If you do not provide a website that enables everyone to view content, your app must

share a copy of the content. For example, suppose that a photo viewing app does not

have a corresponding website. The photo viewer can share the photos with a target app

that can upload those to its own website.

 Respect user selections

When preparing content for sharing, your app can support the content in multiple

formats. It's important that your app respect the selection the user makes. For example,

don't include a link to a web page if the user has only selected a portion of that page.

 Set properties and use them to supply useful information

When you package data for sharing, you have the option to supply a variety of

properties that provide additional information about the content that is being shared.

Taking advantage of these properties can help target apps improve the user experience.

For example, providing a title and description that conveys what the user is sharing can

help when the user is sharing content with more than one app. Adding a thumbnail

when sharing an image or a link to a web page can provide a visual reference to the user.

 Provide a message to the user when sharing cannot be completed

If your app supports sharing but a particular sharing operation cannot be completed for

some reason, provide a message to be displayed in the share window that describes the

steps that the user must take to correct the problem.

 Don't display a message that sharing is not supported by your app.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

210

Windows displays a standard message to the user if your app does not support the

sharing contract.

 Don’t provide alternate ways to invoke sharing

Rely on the share charm and share window. Do not create a Share command on your

app bar, or create a Share button in your app window or context menus.

 Preserve user selections

Your app should preserve the user's selection even after the share flyout closes. This can

help users if they want modify their selection, or share the same content to multiple

targets.

 Provide a string that indicates what the user is sharing

Provide a string that indicates what the user is sharing. For example, if the user is sharing

a web page, include a string that has the URL of the page. If it's an image, include a

description if possible.

 Support sharing of copied data

If your app supports a way to copy data in the app, provide a way to share that same

data.

Target apps

 Keep the look and feel the same between your target app and your primary app.

Align your target app with the design for your primary app, including elements like fonts,

colors, and controls. The target app should feel familiar to people who use your primary

app frequently.

 Keep interactions simple

Avoid time-consuming or complex interactions in your target app. In most cases, actions

like text formatting, tagging people in photos, or setup tasks like connecting to a data

source, are best handled outside of the Share charm.

 Keep navigation to a minimum

When a user selects your app to share content, Windows 8 automatically provides a back

button for navigating back to the app list. You shouldn't depend on this back button—a

target app can't use this button for its navigation. Also, avoid adding your own back

button, or making your users navigate back and forth between multiple pages in your

target app. Instead, use inline controls, such as progressive disclosure controls, select

controls, and inline error messages.

 Don't use light dismiss flyouts

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

211

The Share UI already uses light dismiss. Including another light dismiss element in your

target app can cause confusion with your users.

 Acknowledge user actions

When a user taps the Share charm or invokes the Share UI, let them know that the

system is responding to their action—for example, through an inline message—before

closing the share pane. This helps give the user confidence that their share started

successfully.

 Put important buttons where they can be easily reached

Put share buttons where people can reach them easily. We recommend putting share

buttons on the right side of the screen, so people can reach them with their right

thumbs.

 Remove links that lead people away from the sharing experience

When a user is sharing content, take steps to ensure they remain in the sharing context.

For example, if your app has links that lead to other areas of your app (such as to a home

page), remove or hide them so the user doesn't leave the sharing experience

accidentally.

 Previews should match the actual content whenever possible

If your app includes a preview of what the user is sharing, that preview should match

what will actually be shared as much as possible.

 Use QuickLinks well

QuickLinks act as links to your app that are customized for a specific set of user actions.

Take advantage of these QuickLinks if there are specific actions that might save the user

time and encourage them to share content with your app in the future. These actions

might include sending an email to a specific person, or doing something with a photo.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

212

Guidelines for creating custom data formats

People share a variety of information when they're online. Successful apps take the time to

analyze the types of information that people are most likely to share with others. Then they

package that information so that the receiving apps can process it correctly. In many cases, the

information people want to share falls into one of the six standard formats that Windows 8

supports. However, there are many instances in which having a more targeted data type can

create a better user experience. For these situations, your app can support custom data formats.

Why custom formats?

The share feature in Windows 8 supports six standard data formats:

 Text

 HTML

 Bitmap

 StorageItems

 URI

 RTF

These formats are versatile, which makes it easy for your app to quickly support sharing and

receiving shared content. The drawback to these formats is that they don't provide a lot of

context for the receiving app. To illustrate this, consider the following string, which represents a

postal address:

 1234 Main Street, New York, NY 98208

An app can share this string by using DataPackage.setText. But because the app that receives

the text string doesn’t know exactly what the string represents, it is limited in what it can do with

that data. By using a custom data format, the source app can define the data that is being

shared as a postal address. This gives the receiving app some additional information that it can

use to process the information in way the user expects.

Custom formats can also help you provide more efficient ways of sharing data. For example, a

user has a collection of photos stored on Microsoft SkyDrive, and decides to share some of

them on a social network. This scenario is tricky to implement using the standard formats, for a

few reasons:

 You can only use the URI format to share one item at a time.

 The StorageItems format is intended for sharing local files. To use StorageItems in this

scenario would require that your app download each picture, and then share them.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

213

 Text and HTML let you provide a list of links, but the meaning of those links is lost—the

receiving app won't know that these links represent the pictures the user wants to share.

Using a custom format to share these pictures provides two main benefits:

 Your app can share the pictures faster, because you could create a collection of URIs,

instead of downloading all the images locally.

 The receiving app would understand that these URIs represent images, and could

process them accordingly.

Defining a custom format

If you decide that your app can benefit from defining a custom format, there are a few things

you should consider:

 Consider the experiences you want to enable. It's important that you think about what

actions your users want to take, and what data format best supports those actions.

 Understand the standard data formats, so you don't create a custom format

unnecessarily.

 Don't rely on format combinations. For example, don't expect an app to understand that

if sees one format, it should also look for a second format. Each format must be self-

contained.

 If you create your own custom format, make the definition of that format available to

other app developers.

 After you publish a custom format, don't change it. Consider it like an API: elements

might get added or deprecated, but backward-compatibility and long-term support are

important.

 When you name your format, match the name to the contents of the format. For

example, indicates that any URI is valid, while UriCollection WebImageCollection

indicates that it contains only URIs that point to online images.

 Carefully consider the meaning of the format. Have a clear understanding of what the

format represents and how it should be used.

 Review the structure of the format. Think through whether the format supports multiple

items or serialization, and what limitations the format has.

Choosing a data type

One of the most important decisions you’ll make when defining a custom format is the WinRT

data type used for transferring it between source and target apps. The DataPackage interface

supports several data types for a custom format:

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

214

 DateTimeAny scalar type (integer, string, , and so on)

 IRandomAccessStream

 IUri

 IStorageItem

 A collection of any of the above items

When defining a format, select the type appropriate for that data. It is important that all

consumers and recipients of this format use the same data type—even if there are different

options. Otherwise, it may lead to unexpected data type mismatch failures in target apps.

Custom format example: WebFileItems

To better illustrate how to think about creating a custom format, consider a fictional custom

format, WebFileItems.

At the fictional company, Fabrikam, a developer writes an app that shares files stored online.

One option would be to download the items to the local computer, but that could be time-

consuming and inefficient. Instead, the developer decides to create a custom format for use with

these file types.

First, the developer considers the definition of the new format. In this case, it's a collection of

any file type (document, image, and so on) that is stored online. Because the files are on the web

instead of the local machine, the developer decides to name the format WebFileItems.

Next, the developer needs to decide on the specifics of the format, and decides on the

following:

 The format should consist of an IPropertyValue that contains an InspectableArray that

represents the URIs.

 The format must contain at least 1 item, but there is no limit as to how many items it can

contain.

 Any valid URI is allowed.

 URIs that are not accessible outside of the source app's boundary (such as authenticated

URIs) are discouraged.

With this information mapped out, the developer now has enough information to create and

use a custom format.

Adding custom formats to your app

After you define a custom format, use these tips for adding the format to your app:

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

215

 Test the format with other apps. Make sure that the data is processed correctly from the

source app to the target app.

 Stick to the intended purpose of the format. Don't use it in unintended ways.

 If you're writing a source app, use at least one standard format as well. This ensures that

people can share data with apps that don't support the custom format. The experience

may not be as ideal for the user, but it is better than not letting them share data with the

apps they want.

 If you're writing a target app, consider supporting at least one standard format. This way,

your app can receive data from source apps—even if they don't use the custom format

you prefer.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

216

Guidelines for clipboard commands

Clipboard commands—copy, paste, and cut—provide people with a familiar way to transfer

content from one location to another. With these commands you can help people transfer

content:

 Within the same app

 Between Windows Store apps

 Between desktop apps

 Between Windows Store apps and desktop apps

Although Windows 8 supports other ways for apps to exchange information—such as through

sharing—copy and paste commands remain an expected part of the Windows experience. Your

app should support them whenever possible.

Where and how to support copy and paste

In general, support copy and paste for any editable content that a user can explicitly select, such

as a subset of a document or an image. Also consider supporting copy and paste commands for

content that people might want to use somewhere else. For example:

 Images in a photo gallery app

 Computation results in a calculator

 Restaurant address in a restaurant-search app

As always, be aware of rights management and other factors that might restrict the use of copy

and paste commands. For example, if your app supports viewing rights-managed mail, a policy

might restrict the user from copying all or parts of such content.

After you decide where to support copy and paste, think about how to add it to your app. Here

are a few guidelines to help you:

 Make sure it's clear what a user is copying, or where a user can paste content.

 Provide support for paste only on editable regions and canvases in your app.

 Consider implementing an undo command, as copy and paste can lead to content being

deleted or replaced.

 If a control already supports copy and paste, use the control's implementation. If you

need to build your own implementation of copy and paste, make the experience

consistent with these controls.

 sharingConsider supporting if you are also supporting copy.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

217

Where not to use copy and paste

Here are a few considerations for where you shouldn't use copy and paste.

 Don't provide support for copying content that can’t be selected—either explicitly, or

through a context menu.

 Don't provide support for copying text that is not part of the core content of your app.

Do not copy titles, headers, and button text.

Accessing copy and paste commands in your app

Before implementing support for copy and paste commands, consider how people access copy

and paste commands. In general, people access copy and paste commands by one of three

methods: a context menu, the app bar, or keyboard shortcuts.

Use a context menu:

 For items that people can select only through tap-and-hold gestures—such as hyperlinks

or embedded images. For example, let's say your app displays an address to the user,

and you want the user to be able to copy that address. A great user experience would be

to create a Copy Address command that people can access when they either right-click

or tap-and-hold the address. This command would then copy the address to the

clipboard, from which the user can paste it into the app of their choice.

 For text selection (both editable and read-only).

 For paste operations where the target is well defined, such as a cursor location or a table

cell.

If the preceding guidelines don't apply to your app, then you can likely use the app bar. Some

examples include:

 When your app supports the selection of multiple items.

 When the user can select a portion of an image.

 When the target of a paste command is clear—such as pasting a screen shot on a

canvas.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

218

We strongly encourage you to always support keyboard shortcuts. Also, if your app supports the

paste command, disable it when the clipboard is empty or if it contains content that your app

doesn't support.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

219

Guidelines for search

Adding search through the Search charm lets people search your app's content from anywhere

in their system at any time. If your app is the main app on screen, people can search its content

immediately by selecting the Search charm. Otherwise, people can select the Search charm and

then select your app from the list of apps in the search pane to search your app.

Using the Search charm helps you:

 Take advantage of muscle memory that people have built by using the Search charm in

the system and in other apps.

 Ensure that people have a consistent and predicable experience when they search and

when they change search settings.

 Make your app more visible by placing it at the top of the list of searchable apps if the

user searches your app frequently.

Appropriate use of the Search charm

 Search for content in your app

Your app's content could include content on the local

file system, or content that's accessible through a web

service. You can set up the Search charm so that you

can respond to a user's search query and display

search results in a page that you design for your app.

When a user selects the Search charm, a search pane

is opened containing a search box where they can

enter a query, as shown in the screen shot.

If your app is the main app on screen, it is

automatically highlighted in the list of apps in the

search pane, like Apps is highlighted in the screen

shot. For example, if you open the Search charm while

in the Store app, the Store app would be

automatically highlighted in the list of apps.

Tip You can use shortcut keys to access the charms,

including the Search charm. The Windows Logo Key +

C lets you select any of the charms, and the Windows

Logo Key + Q selects the Search charm.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

220

Inappropriate use of the Search charm

 Don't add any UI controls for search in your app.

Your app’s position in the list of apps in the search pane is determined by how often the

user searches your app by using the Search charm. As a result, adding an additional

control for search in your app UI could actually make your app more difficult to search

when your app is not the main app on screen, because it may not be as visible in the

search pane's app list.

Additionally, adding your own controls for search unnecessarily duplicates features and

might confuse people. For example, one way that app-specific search UI might confuse

people is by causing the user to have more than one search history with a particular app.

One search history would be based on use of the Search charm, which the system tracks

and maintains. Another independent search history would be based on the use of the

app-specific search UI.

 Don’t place search UI in the app bar.

Maintain the app bar as a place to show commands that are unique and specific to your

app.

 Don’t use the Search charm to add a "find-in-page" feature to your app.

When people use "find-in-page", they want to stay on the current app page. But the

Search charm navigates them away, and replaces the current page with another app

page that displays search results.

Instead, add a control to your app bar that lets people "find-in-page" and group the

"find-in-page" feature with related features like "replace".

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

221

Customizing suggestions and placeholder text in the search pane

When the user selects the Search charm and

starts typing a query into the search box,

search suggestions are shown just below the

box in the search pane. These suggestions are

supplied by the main app on screen if it has

implemented the Search contract.

There are two types of suggestions an app

can provide: query suggestions and result

suggestions. Query suggestions are auto-

completions of the user's query text, and

represent possible queries that the user might

want to search for. Result suggestions are

strong or exact matches to the user's query

that the user may want to see immediately.

In the screen shot of the search pane, the

Store app provides two query suggestions

and one result suggestion for the user's

query, "word".

 Always provide query suggestions to help the user search quickly.

Use query suggestions as way to auto-complete query text that people can search for in

your app. This is a great way to help people search quickly by reducing the amount of

typing needed to complete a search. Instead of entering the entire query, people can

select one of the suggested queries and immediately execute the search.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

222

Your query suggestions should contain the

user's current query text.

Because your query suggestions should be

auto-completions that are based on the

current query text, they should actually

contain the current query text. For example,

the suggested queries provided by the

Weather app in the screen shot all contain

the current query text, "f".

Your query suggestions should directly

reflect the results that your app can provide.

By reflecting the results your app can

provide, your query suggestions can help the

user figure out what they can search for in

your app. For example, the Weather app in

the screen shot automatically completes the

user's query to suggest cities for which the

app can provide weather reports.

 If the user selects a query suggestion, immediately take the user to a search results page

for the selected query.

 If you want to recommend strong or exact matches for the user's query, provide result

suggestions.

Use result suggestions to let the user go directly to the details of a particular result

without the need to navigate to a search results page.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

223

A result suggestion should consist of an

appropriate image or thumbnail, a relevant title

or label, and a brief description.

The image, title, and description help the user to

determine quickly whether the suggested result

is what they were searching for, as shown in the

screen shot.

 If you want to supply multiple result suggestions, use and label separators to help

people distinguish between results.

For example, when providing more than one suggestion for results with different content

types (like movies vs. TV shows), use labeled separators to provide a meaningful

distinction between the content types of the result suggestions.

Separators can be added to the list of suggestions that your app supplies to the search

pane, but each separator counts towards the five-suggestion limit.

 If the user selects a result suggestion, immediately take the user to the details of that

result without first taking them to a search results page.

 If you provide both types of search suggestions (queries and results), provide only one

result suggestion. It should be displayed last, at the bottom of the list of suggestions.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

224

While the user enters a search query,

Windows automatically provides

suggestions for possible queries in the

search pane. These suggestions are based

on the user’s search history with your app.

They are shown first, before suggestions

that your app provides are displayed.

Showing your suggested result last helps

visually distinguish it from suggested

queries, as shown in the screen shot.

 Supply no more than five search suggestions.

The search pane will show only the first five suggestions (for queries and/or results) that

are supplied by your app.

 Don’t use suggestions to filter or scope search results for your app.

Filtering and scoping refine and manipulate the set of search results that is associated

with a specific query. They should be placed with the results in the app's search results

page. In contrast, suggestions are directly related to the query text that the user enters in

the search box.

 Use placeholder text in the search box to describe what people can search for in your

app.

We recommend that you set the placeholder text of the search box to a brief description

of the content in your app that a user can search for. For example, a music app that

supports searching by album name, song name, or artist name should set the

placeholder text to be: "Album, artist, or song name".

Placeholder text is shown only when the search box is empty and is cleared if the user

starts typing into the box.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

225

Designing a search results page

When the user submits a search query to your app, you display a page that shows search results

for the query. Because you design the search results page for your app, you can ensure that the

results presented to your user are useful and have an appropriate layout. For example, the

screen shot shows the search results page created for the Contoso app which displays example

search results for the "item" query.

 Let people see what they searched for (their query text).

For example, in the Contoso app's search results page, the "Results for" string next to the

"Contoso" app name indicates that the current set results is for the "item" query.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

226

 Use the ListView control and Search contract templates to bring the Windows 8 look and

feel to your app.

Using the ListView control for displaying search results helps produce a consistent and

predictable user experience and reinforces what people have already learned in the

system. The Microsoft Visual Studio Express 2012 for Windows 8 templates provided for

the Search contract use the ListView control. Learn more about the ListView control in

Adding ListView and GridView controls.

The ListView control lets you use a grid layout or a list layout to display your search

results. Search results are ranked and therefore typically have a strong order from best

match to weakest, which should be reflected in how the results are ordered in both

layouts. Grid layouts in Windows 8 use horizontal scrolling. Therefore, make a grid of

search results that is ordered from top to bottom and then from left to right. Because

list layouts use vertical scrolling, search results that are displayed in a list should be

ordered from top to bottom.

 Avoid putting important or relevant results or information on the right edge of the

screen.

The Search charm is lightweight and quickly gets out of the way whenever the user

interacts with the app canvas. However, to help people quickly glance at results, avoid

showing the most important or relevant result on the right side. This side might be

temporarily covered up when the search pane is visible.

 Let people filter and/or scope search results from the search results page.

You can improve your app's search results page by letting people set filters and scopes

to refine the set of search results. Best practices for letting people filter and scope search

results in your app's search results page include:

 Indicate the number of results available with each filter or in each scope. This

helps people understand whether they are effectively refining their search.

 Provide a way to clear the filters and see all results.

For example, the Contoso app's search results page provides a set of filters above the

results, with counts next to each filter.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

227

 Indicate why a search result matches the query.

For example, the Contoso app's search results page in the screen shot highlights the

user's query ("item") in each result. This is called hit highlighting.

 Let people navigate back to the last-viewed page after they look at the details for a

result.

When searching, people are often going to be looking at several results as they gather

information. Looking at a specific result and then getting back to the search results page

should be easy.

A common way to accomplish this is to include a back button in the app UI as shown in

the screen shot. This back button should be used to go to the previous page that the

user was interacting with before submitting their search.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

228

Tips for activation from search

 Be sure to handle a search activated event for an empty query.

When people open the search pane (through the Search charm), they can choose an app

to search with when they enter a query into the search box. In your activated event

handler, when your app is activated for search, you should also check to see if your app

was activated with an empty queryText string.

If your app is activated with an empty queryText string and your app is already running

or is suspended, return to the app's last-viewed page. If your app isn't running or

suspended, take the user to a landing page appropriate for this search.

Generally, your app's default, home page is an appropriate landing page when the

queryText is an empty string, but you can also design an app page specifically for this

purpose.

 Save the previous state of the app when the app is activated for search.

The power of the Search contract enables people to invoke an app for search from

anywhere in the system by using the Search charm. The app must be able to respond to

a search activation event at any time. Apps should save their state and provide people

with a way to get back to that previous state where appropriate.

Example: In a mail app, the user might have a partially composed message. Later, if the

user switches to the mail app to search in it, the mail app should save the message as a

draft and provide people with a way to get back to it.

 Navigate to your search results page while responding to Search activation when your

app is snapped.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

229

If your app is snapped when the user uses it to search (causing the search activated

event to fire) your app automatically unsnaps (causing the unsnap event to fire) and

becomes the main app on screen.

The search activated event and the unsnap event are fired in this order:

1. Search activated event

In response to this event, your app should display its search results page for the

query.

2. View state changed event

In response to this event, check whether your app has unsnapped, and if it has, adjust

your app to become the main app on screen. Do not take the user away from your app's

search results page, because if your app doesn’t load the search results page, the user

might feel that the app is broken and is not searching properly.

 Save the search results page, the filters, and scope for the last query in case your app is

activated to search for that query again.

The Search charm lets people switch between multiple apps quickly to compare results

for the same search query. The user might submit a search query to your app and set

filters for your app's search results. The user might then switch to another app, search

that app using the same query, and then come back to view your app's search results

again.

When this happens, your app is activated for search (again) and your app's search results

page should show the same filters that the user set the first time that your app displayed

results for this query. If the current query is the same as the last query, you should not

get a new set of search results, but instead load your previous search results page,

including the filters and/or scope that the user had applied, and the exact location where

the user was focused.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

230

Guidelines for file picker contracts

Follow these guidelines to customize the file picker when you use the file picker to provide

access to your app's content, a save location, or file updates for other apps.

Appropriate use of file pickers contracts in apps

 Provide files.

Integrating with the File Open Picker contract lets your app provide users and other apps

access to your app's content through the file picker.

 Provide a save location.

Integrating with the File Save Picker contract lets your app provide users and other apps

with a save location through the file picker.

If your app provides a save location, also provide access to your app's content by

integrating with the File Open Picker contract.

 Provide real-time file updates.

Integrating with the Cached File Updater contract lets your app perform updates on files

in your app's repository and provide updates to local versions of the files in your

repository. From the users' perspective, this lets them to operate on a remote file that

your app maintains in its repository as though that file were local. For example, the user

could use a text editor app to edit a file and Microsoft SkyDrive could update the version

of that file in its repository).

If your app updates files, it should also provide a save location and access to files. It can

do this by integrating with the File Save Picker contract and the File Open Picker

contract, respectively.

User experience guidelines: providing files, a save location, and file updates

If your app provides files, a save location, or file updates through file pickers, you need to design

a page for your app that displays files (or other UI) to the user. This page is displayed in the

center area of the file picker.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

231

This screen shot has been modified to emphasize and label the center area of a file picker

window to show where your app's page will be loaded

 Design the page to display in the file picker (your file picker page) based on an existing

page that your app uses to display files.

If your app is providing files for the user to pick through a file picker, your app should

have an existing page that lets users view files. We recommend that you design your file

picker page so that it is consistent with this existing file-view page. Making these two

pages consistent with each other helps users feel comfortable and familiar with how your

app displays files in the file picker.

To further ensure that users feel comfortable with your app's file picker page, use the

same (or similar) navigation UI and error reporting for your file picker page as you use

for your existing file-view app page. Especially in the case of navigation, users expect

similar commands and locations to be available in both the file picker page and the

existing file-view page.

 Design your file picker page around your user's current task.

Keep the UI for your file picker page focused on the user's current task. For example,

help users pick, save, or update files, by stripping out UI that is not directly related. This

helps make sure that using the file picker is a quick, in-and-out experience that gets

users back into the app they were using (the calling app or caller).

For example, if a file picker is being used to access files that are provided by your app,

remove UI that supports complex or detailed navigation, search, or information that

cannot be picked.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

232

If you want to let the user perform other tasks like consumption, modification, and file

management, add controls or other UI for those tasks to your main app.

 Set the title of the file picker to the name of the user's current location.

This gives users a predictable way to orient themselves as

they use your app from the file picker. The title, which is

highlighted in this screen shot, appears in top bar of the file

picker letterbox.

In this screen shot, the title is , which Pictures library

lets the user know where they are in their system. Update

this title whenever the user navigates to a different location.

 All file locations that are accessible to your app should be accessible from your file picker

page.

If your app can normally access files in a particular location, your file picker page should

also give access to files in that location. Access to locations should also be consistent

across all file picker pages, if your app has more than one page. This ensures that users

have predictable access to files and locations.

 Use the UI templates and controls available in Microsoft Visual Studio.

Visual Studio has built-in templates that you can use to help create the file picker view

for your Windows Store apps.

Additional UX guidelines: providing files

 Display files in your file picker page in a unique and relevant way.

Organize and display files in a way (or ways) that is unique to your app and ensures that

your page is both convenient and relevant to users. This should still be consistent with

what users see in the view that your app uses to display files within the app.

 Display files on your file picker page that are not accessible by using Windows or other

apps.

Differentiate your app from Windows and other apps by providing access to files in

locations that are not accessible from other apps or from Windows. These locations can

include your app's storage folders or remote servers.

 Design the UI of your file picker page to respond to the selection mode of the calling

app.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

233

When an app calls a file picker to access files, the calling app specifies whether the user

can pick a single item or multiple items. We recommend that you design your app page

to indicate selected files appropriately and differently for each selection mode. For

example, if the user is trying to select a profile picture (a single item selection) from files

provided by your app, they might tap or click more than one photo while they try to

decide which to pick. In this situation, your app UI would only allow one item to be

selected at a time. Otherwise, if the user is trying to select multiple files to share with

their friends (multiple item selection), your app UI would allow multiple items to be

selected simultaneously.

 For webcam, photography, and camera apps, design the UI of your file picker page

around taking pictures.

Make sure users can get back into the app they were using (the calling app or caller) by

simplifying your app's UI for your file picker page. Limit the controls you provide on your

file picker page to controls that let the user take a picture, and let the user apply a few

pre-processing effects (like toggling the flash and zooming).

All available controls must be visible on your file picker page because your app bar is not

accessible to the user from the file picker. We recommend that you organize these

controls on your file picker page similarly to the way they are organized in your app bar.

Position them on your file picker page as close as possible to where they appear in your

app bar, at the top or bottom of the page.

Additional UX guidelines: providing a save location

This modified screen shot emphasizes the center area of a file picker window where the

page that displays your app's save location will be loaded.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

234

 Provide save locations that are not accessible to users through Windows or other apps.

Let users save files to locations that are not easily accessible through Windows or other

apps, like your app's storage folders or remote storage locations.

 Change the files displayed on your file picker page based on the file type selected.

If the user changes file type in the file picker's file-type drop-down list, update your view

to display only files that match the selected file type. Filtering displayed files by type

provides the user with an easy, consistent method of identifying the types of files they’re

interested in.

 Allow the user to replace a file easily by selecting the file in your app's file picker page

If the user selects a file in your file picker page, automatically replace the file name in the

file picker file name box so users can easily replace existing files.

Additional UX guidelines: providing file updates

 Provide a repository that can track and update files for users.

If users use your app as a primary storage location where they regularly save and access

files, you may want your app to track some files to provide real-time updates for users.

 Design your app and file picker page to present a robust repository.

If users use your app as a primary storage location for their files, design your app and

your associated file picker view to protect against data loss, which could be caused by

frequent file updates or conflicting file versions.

 Let users resolve issues encountered during updates.

To help ensure a successful update, your app should to notify users in real time (using

UIRequested) when a file is being updated or saved and user intervention is needed to

resolve an issue. It is especially important that your app help users resolve issues with

credentials, file version conflicts, and disk capacity. The UI you create should be

lightweight and focused specifically on resolving the issue. If more than one step is

required (like login), all the steps should be handled in your app's file picker page. Once

complete, your app can enable the file picker commit UI. In addition, your app should

update the file picker title to gives users context about where they are.

If the problem cannot be solved in real time by the user, or if you simply need let the

user know what happened (perhaps an error occurred that the user can't resolve), we

recommend that you notify the user of the problem the next time your app is launched

instead of immediately when the problem occurs via UIRequested.

 Provide additional information about update and save operations from your normal app

pages.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

235

Your main app UI should let users manage settings for in-progress and future

operations, get information about in-progress and previous operations, and get

information about any errors that have occurred.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

236

Guidelines for app settings

The Settings charm is always available and provides a single access point for all settings. Settings

include system settings that always apply, app-related settings that are brokered by the app

with permissions, and settings that are specific to the current app.

People swipe from the side of the screen to display the charms and tap the Settings charm to

display the settings window. The settings window includes both app and system settings.

The app may provide SettingsCommand entry points, which appear at the top of the settings

window. Two entry points, Permissions, and Rate and review, are provided by the system. The

bottom of the settings window includes PC settings provided by the system, like volume,

brightness, and power.

Note Only apps that are installed through the Windows Store have the Rate and review entry

point. Side-loaded enterprise apps don't have this entry point.

The entry points open settings Flyouts, which contain the app’s settings, help, About info, and

any secondary commands or information that your users would access infrequently. An app can

have multiple entry points for settings, and each settings Flyout can have multiple options.

User experience guidelines

Choose which app features are accessed in app settings

 Choose features that affect the behavior of the app as a whole and that are adjusted only

occasionally, like choosing between Celsius and Fahrenheit as temperature default units

in a weather app, or changing account settings for a mail app.

 Use the Settings charm to provide access to app info that's not needed very often, such

as privacy statements, help, app version, or copyright info.

 Don't include features that are part of a typical app workflow, like changing the brush

color in an art app. These features belong on an app bar or on the canvas.

Add your entry points for app settings to the settings windows

 Group similar or related settings together under each entry point. Avoid adding more

than four entry points.

 Combine less-used settings into a single entry point so that more common settings can

each have their own entry point.

 Expose the same entry points regardless of the app context. If some settings are not

relevant in a certain context, handle them in the app settings Flyout, not by changing the

entry points presented in the settings window.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

237

 Be specific in naming entry points. Reflect the information or settings that are disclosed

to the user when they select the entry point. When there is only one settings entry point

that covers multiple categories, avoid repeating the term “Settings” or using a synonym.

Instead, use a qualifier of settings, like “Defaults”.

 Promote more frequently used settings to have their own entry point in the top-level

charm. For example, if you need to have About, terms of use, privacy statement, and

support information represented in your settings, place them under the About entry

point rather than having an entry point for each setting.

Create settings Flyouts

SettingsFlyoutThe control implements all of the UI requirements in this section.

 Launch a consistent UI surface, by using a settings Flyout, from all of the settings entry

points specified in the settings window.

 Settings Flyouts should be narrow (346 pixels) or wide (646 pixels) and should have a

header that includes a back button, the name of the entry point that opened the Flyout,

and the app’s icon.

 showPanel hidePanelUse the and animations, so that settings Flyouts slide in from the

side of the screen that they're closest to and slide out toward the same side.

 Place your settings Flyout on the same side of the screen as the charms. The charms and

the settings window may be on the left side of the screen if the system's text direction is

right-to-left.

 Use a light-dismiss surface, so that the settings Flyout disappears when the user touches

anywhere on the screen outside of the surface. This enables the user to quickly change a

setting and get back to the app. The UI created through the SettingsFlyout classes is a

light-dismiss surface. If you create your own UI, make sure that your settings Flyout is

dismissed when the user touches the app (on contact down), when the app loses

activation, such as when the charms are opened, and when the app is snapped.

Add settings to settings Flyouts

 Aim for simplicity.

 Provide well considered defaults for your features and add as few settings as

possible.

 Avoid settings hierarchies deeper than two levels.

 Present content from top to bottom in a single column, scrollable if necessary,

but limit scrolling to a maximum of three times the screen height.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

238

 When a user changes a setting, the app should reflect the change immediately. A new

setting value is applied as soon as the user stops interacting with a particular setting

control. This is recommended for light-dismiss surfaces. If your app doesn’t apply the

new values to the settings store by the time the settings Flyout closes, the new values

might be lost, because a settings Flyout shouldn't have a commit button. Handle the

beforeshow and afterhide events to do control initialization and state serialization.

 Use an additional level of UI or an expand/collapse model to repeat settings exposed

under multiple objects listed in the UI. For example, a weather app that provides per-city

settings should provide the list of cities that can be configured in the first settings level

and let the user tap on the city to get to the next level to configure options there. A mail

app that supports multiple accounts should show the list of accounts and let the user tap

on an account to open the corresponding second-level settings UI.

 Use the provided app UI style sheets and common controls. The style sheets provide

standard layout, style, and spacing for common controls.

 Use class="win-label" or <name of style> for the title of the settings Flyout.

 Use H3, or <name of style> for headers above sections of settings.

 Use <p> or <name of style> for descriptive text above controls.

 Use built-in control styles for control labels when available or <label> otherwise.

 Use built-in control styles or <name of style> for control status (such as “On” for

a toggle switch).

 Use controls consistently for settings of the same type. Add a descriptive message if one

of the controls is disabled.

 Each control should have a simple, explanatory label.

Here is a list of basic controls recommended for settings:

 Toggle switch: Use toggle switches to let users set values on or off.

 Button: Use buttons to let users initiate an immediate action without dismissing

the current settings UI.

 Hyperlink: Use a hyperlink when the action takes the user to another UI surface

and dismisses the current settings UI.

 Text input box: Use an input box to let users enter text. Use the type of text input

box that corresponds to the type of text you're capturing from the user, such as

email or password.

 Radio button group: Use a radio button group to let users choose one item from

a set of up to 3 mutually exclusive, related options.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

239

 Select control: Use a select control to let users choose one item from a set of 6 or

more text-only items.

Inappropriate use of settings

 Don't add to the settings area any commands that are associated with common app

workflow. These commands should be placed in the app bar or on the app canvas.

 Don't use an entry point in the settings window to do something directly without

launching another UI surface.

 Don't use the settings window to navigate into another part of the app. When the

settings window closes, the user should be in the same place in the app that they were

when they entered settings. Controls such as the app bar are a more appropriate place

for navigation.

 Don't use the SettingsFlyout class as a general-purpose control. It's intended only for

settings UI launched from the Settings charm.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

240

Guidelines for app help

Help content should be a single page and can include text, links, and images. To provide the

most current content, include a link to your support or home page or embed an online page

into your help page.

Appropriate use of Help

Before including Help content for your app, consider whether your app actually needs it. For

example, if your app has proven to be easy to use, you might decide that Help content isn't

necessary. If there are one or two UI elements in your app that are a bit tricky for people to

understand, try integrating tips into the UI, creating a simple in-app demo, or redesigning those

elements to avoid creating help that only addresses one or two simple fixes.

Dos

If you've decided to add a Help page for your app, here are some things to consider:

 Do label the entry point in the Settings pane Help to clearly identify it. Although the

label is configurable, it's better to stay consistent with all other apps.

 Do open to your Help page from the Settings pane. The Help entry point shouldn't link

directly to a website.

 Do keep the Help page short and easily scanned.

 If your Help content does not fit into a single topic, or if you want to include information

that requires updating, then add links to your support website from the Help content.

But keep in mind that linking to a web page takes your customer out of the app

experience and should be used sparingly.

 Do write clearly and use a conversational voice, but avoid idioms and colloquialisms.

Don'ts

Here are some things to avoid when creating Help content:

 Don't use the Help entry point to link directly to a website.

 Because Help should feel like it is inside the app, don't launch a web browser when the

user taps Help.

 Avoid technical terms and jargon whenever possible.

 Don't create Help content in the app that lists every known issue or documents every

single feature of your app. Remember that you can link to your support web page, which

might be a better location for information like that.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

241

 Don't use Help to notify customers that a newer version of the app is available. This

information is available in the first-level of the Settings user interface.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

242

Guidelines for devices that access personal data

Microphones, cameras, location providers, and text messaging services can access the user's

personal data or cost the user money, so they are considered sensitive devices. Windows Store

apps have features to ensure the user has control over which apps may access these sensitive

devices.

How the user controls the app's use of sensitive devices.

Permissions for Windows Store apps to use sensitive devices are controlled on a per-app, per-

user level. The user controls permissions by using the consent prompt, or by using the Settings

charm

The consent prompt

The following screen shot shows the consent prompt as it appears in a Windows Store apps. The

prompt appears the first time an app accesses a sensitive device. It gives the user options to

block or allow the app's access to the device capability. Windows remembers the response, so

that the user is not prompted again for the same app.

The Settings charm

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

243

Users of Windows 8 can also control each app's access to sensitive devices by using the Settings

charm. The user taps on the Settings charm to open a settings flyout. They can then enable or

disable the app's access to sensitive device capabilities.

The Settings charm is pictured here on the right side of the app:

The Settings charm provides flyouts that let the user enable or disable sensitive capabilities. An

example of a flyout is shown here:

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

244

Start using the device only if it's needed

The first API call that accesses the device triggers the consent prompt. If an app's primary

purpose does not require access to a sensitive device, it can confuse the user if a prompt for

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

245

permission to use the device appears as soon as the app starts. Follow these guidelines for a

good user experience.

Guideline Example

If use of the sensitive device is

not essential to your app, don't

access it until the user specifically

requests it.

A social networking app has buttons for "Check in with

my location" and "Take a profile picture". This app should

not access location or the camera until the user clicks the

corresponding button.

If an app requires device access

for its main function, then it can

access the device when the app

starts.

An app for capturing live videos from an attached camera

requires the camera for its main purpose. It's OK for this

app to use the camera when it starts, to show a video

preview right away.

First use of the device must be on the main UI thread

The first call to start using the device must be made on the UI thread so that the consent

prompt can be shown to the user. If the consent prompt can’t be shown, the user can’t grant

device access to the app.

To make sure you first access the device on the UI thread do the following:

 Don't use a background task for the first use of the device.

 In an app using JavaScript, the first use of the object that accesses the device should not

be in the activation handler for the app.

 In an app using C# or C++ with XAML, the first use of the object that accesses the device

should typically be done in MainPage.xaml.cs instead of App.xaml.cs.

Note In apps that use C# or C++ in Windows 8, the first use of the device object should be on

the STA thread. Calls from an MTA thread may result in an error code of

E_ILLEGAL_METHOD_CALL.

What if access to a device is turned off?

An app's access to a sensitive device may be disabled for one of these reasons:

 The user blocked access by using the consent prompt.

 The user disabled access to the device in the Settings charm.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

246

 The device is not present on the system.

To provide a good user experience when access is disabled, do the following:

 Handle the error from the API that occurs when your app attempts to access a disabled

device capability.

 Display a message to the user that informs them that the device capability is disabled.

Also tell them how they can re-enable it by using the Settings charm, and by trying again

to use the capability in the app. Follow the Guidelines for notifying the user to provide

this message.

 Provide UI for the user to re-initiate access to the device if the device is re-enabled.

Reinstantiate or reinitialize the object that accesses the device by using this UI. For

example, a mapping app may provide a button for refreshing the current location. The

button must instantiate a new Geolocator object.

Guidelines for notifying the user of device revocation

The following guidance describes how apps should react when a user revokes a sensitive

capability. The purpose of this guidance is to properly notify the user of loss of functionality, and

guide them towards turning a capability back on without taking away from the app's experience.

Your app should tell the user that the capability is turned off, and that they can enable the

capability by using the app's settings.

Reason the device is

disabled Sample error message format

The user blocked access

by using the consent

prompt or the Settings

charm.

"Your <device capability> is currently turned off. To change your

<device capability> setting, open the settings charm and tap

permissions. Then <enable action> to start using <device

capability> again. ”

 Replace <device capability> with webcam, microphone,

location, or text messaging.

 Replace <enable action> with the action the user needs

to take in the UI to reinitialize access the capability, like

clicking a button.

The device capability isn't

present on the system.

“You do not have the required <device capability> present on

your system.”

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

247

The UI you use to present the message about a disabled device capability depends on whether

the device capability is essential to the app.

Display a flyout or inline text if the device is non-essential

If the sensitive device is not essential to your app, display the message in a flyout at the point of

invocation, or in unobtrusive inline text.

For example, if a social networking app has buttons for "Check in with my location", and the user

clicks the button when the required device capability is disabled, the app should show the error

message in a flyout near the button, or in inline text.

The following screen shot shows an app that displays the message in unobtrusive inline text. The

message reads: "You cannot check in until you turn on your location. To change your location

settings open the settings charm and tap permissions. Once turned on, tap the refresh button

below". The refresh button in this example needs to reinstantiate the object that accesses the

device capability, in this case, location.

The following screen shot shows an app that displays the message in a flyout near the button.

The message reads: "You cannot view the weather for the current city until you turn on location.

To change your location setting, open the settings charm and tap Permissions. Then tap Current

city to get the location." In this example, the Current city button should reinstantiate the object

that accesses location.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

248

Display a dialog if the device capability is essential

If an app requires device access for its main function, display the error by using an error dialog.

In the screen shot that follows, an app for displaying nearby points of interest requires the

location capability for its main function. So it uses a dialog to display a message that instructs

the user to re-enable the location capability.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

249

Other guidelines for revocation messages

Here are some more guidelines for informing the user that a device capability is disabled:

 Notify the user of an unavailable capability if the user attempts to use a device capability

that's not essential to the app. The user should be aware of the loss of functionality.

 Make the device revocation message clearly visible to the user.

 Use a flyout when a capability is not available, a control to use the capability is provided,

and the capability is not essential to app functionality.

 Don't let the text interrupt the app's flow.

 notificationsDon't use to notify the user of device capability unavailability.

 Don't programmatically try to launch the Permissions page in the Settings charm

 Don't show an error message for a device capability that has not yet been requested by

the user. For example, if a social networking site has an option to include location when

the user posts messages, but the user has not chosen to share location, don't show an

error message when posting messages.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

250

Guidelines for location-aware apps

Performance guidelines

This section describes several ways to ensure that your app gets the location data it needs,

without spending more resources than necessary.

Use one-time location requests when updates aren't needed

Some apps need to acquire location data only once, and don't need to receive location updates.

For example, an app that adds a geolocation tag to a photo or email does not need to receive

location update events.

Adjust the movement threshold

Some apps need location updates only when the user has moved a large distance. For example,

an app that provides local news or weather updates may not need location updates unless the

user's location has changed to a different city.

Set the report interval

Most apps, other than real-time navigation apps, don't require a highly accurate constant

stream of location updates. Some apps need to be updated on a regular interval. For example, a

weather app may only desire a data update every 15 minutes.

Location-aware devices can track the report intervals requested by all installed apps, and

provide data reports at the smallest requested interval. Then, the app with the greatest need for

accuracy receives the data it needs. Therefore, your app might get updates more often than

your report interval.

Note It isn't guaranteed that the location source will honor the request for the given report

interval. Not all location provider devices track the report interval, but you should still provide it

for those that do.

Set the desired accuracy

To help conserve power, your app should set the desired accuracy level to indicate whether your

app needs high accuracy data. If no apps require high-accuracy data, the system can save power

by not turning on GPS providers.

Note Set desired accuracy to HIGH if GPS data is important for your app.

Use geocoordinate accuracy

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

251

Apps that have specific accuracy requirements, such as navigation apps, should use the

geocoordinate accuracy level to determine whether the available location data meets the app's

requirements.

Consider startup delay

The first time an app requests location data, there might be a short delay of one to two seconds

while the location provider starts up. Consider this in the design of your app's user interface. For

instance, you may want to avoid blocking other tasks while you wait.

Consider background behavior

Windows Store apps won't receive location update events while suspended. If your app tracks

location updates by logging them, be aware of this. When the app is resumed, it will receive only

new events. It will not get any updates that occurred when it was inactive.

Follow If your app needs location data when it is suspended, you must use a background task.

these guidelines when using geolocation within a background task or a background audio

exception:

 Use only one-shot lookups from within background tasks.

 Do not register for position or state change notifications in your background task or in a

background audio exception.

Note JavaScript background location tasks are not supported. The background task must be

written in C++ or C#.

User experience guidelines

Start using the location object only when the app requires location data

The app's first access to geolocation will trigger the consent prompt. This occurs the first time an

app calls getGeopostionAsync or registers an event handler for the PositionChanged event. If

an app's primary purpose does not require access to geolocation, it can be confusing to the user

if a prompt for permission to use the device appears as soon as the app starts. Follow these

guidelines for a good user experience.

Guideline Example

If location is not essential to your

app, don't access it until the user

A social networking app has a button for "Check in with

my location". This app should not access location until

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

252

specifically requests it. the user clicks the button.

If an app requires location for its

main function, then it can access

the device when the app starts.

An app for placing the user on a map requires location

for its main purpose. It's OK for this app to use location

when it starts, to show the user's location right away.

Use the main UI thread for the first use of Geolocation

The first use of the Geolocator object to get location data must be made on the main UI thread,

to show a consent prompt to the user. The first use of the Geolocator can be either the first call

to GetGeopositionAsync, or the first registration of a handler for the PositionChanged event.

The consent prompt is described further in Guidelines for using sensitive devices.

This means that:

 In an app using JavaScript, the first use of the Geolocator object should not be done in

an activation handler.

 In an app using C# or C++, the first use of the Geolocator object to get location data

must be on the main UI thread. The main UI thread is typically code in MainPage.xaml.cs

instead of App.xaml.cs.

Provide UI for indicating accuracy

Since different location providers can provide varied accuracy, use the accuracy parameter to

communicate accuracy to the user. For example, in a mapping app, a circle around the user's

location can indicate the accuracy range.

Provide UI for manually entering location

Your app should provide an alternate way to enter location, if the current location data is not

available.

Provide UI for manually refreshing location

Your app should provide a UI control to allow the user to refresh their current location.

Guidelines for responding to changes in location settings

 The user should be able to turn off location by using the Settings charm or Control

Panel.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

253

 To respond appropriately if the user disables or re-enables location, do the following:

 StatusChanged statusHandle the event. The property of the argument to the

StatusChanged event has the value Disabled if the user turns off location.

 Check the error codes returned from GetGeopositionAsync. If the user has

disabled location, calls to GetGeopositionAsync will fail with an ACCESS_DENIED

error. The LocationStatus property will have the value Disabled.

 If you have an app, such as a mapping app, for which location is essential, ensure that

you do the following:

 PositionChangedHandle the event to get updates if the user’s location changes.

 StatusChangedHandle the event as described here.

Show an appropriate error message or dialog when location is disabled or not available

When access to location data is revoked by the user, or data is not available to the app, present

the user with appropriate error messages. If you need to notify the user that location is turned

off, follow the error guidelines described in Guidelines for using sensitive devices, as well as

these:

 We suggest this for your message: "Your location is currently turned off. Change your

settings through the Settings charm to turn it back on."

 Don't let error messages interrupt the app's flow. If location is not essential for your app,

display the message as inline text. Social networking or gaming apps fall into this

category.

 If location is essential for your app's functionality, display the message as a flyout or a

dialog. Mapping and navigation apps fall into this category.

 Don't try to programmatically launch the Settings charm.

Discard the location object and event listeners when location is disabled

GeolocatorThe object becomes non-functional when the user revokes access to location.

PositionChangedRemove any event listeners for the event when location is disabled.

Clear cached location when location is disabled

If your app saves or caches location data, clear any cached data when the user revokes access to

location.

Provide UI for re-enabling location

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

254

Your app should provide UI for re-enabling location, such as a refresh button that reinstantiates

the Geolocator object and reattempts to get location.

 If the user re-enables location access after disabling it, there is no notification to the app.

The status property does not change, and there is no StatusChanged event. Your app

should reattempt access by creating a new Geolocator object and calling

GetGeopositionAsync to get updated location data, or resubscribing to

PositionChanged events. If the status then indicates that location has been re-enabled,

clear any UI that it previously displayed that notified the user that location was disabled,

and respond appropriately to the new status.

 Your app should also reattempt to get location on activation, when the user explicitly

attempts to use functionality that requires location, or at any other scenario-appropriate

time.

Privacy considerations

A user's geographic location is personally identifiable information (PII). The Microsoft Privacy

site provides guidance for protecting user privacy

http://www.microsoft.com/privacy/dpd/default.aspx

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

255

Guidelines for developing using proximity

Proximity allows users to connect two devices with the human gesture of a tap, or by browsing

for devices within wireless range. You do not need to be connected to a network. You can

simply tap two computers together, or connect using Wi-Fi Direct. You can use proximity to

connect apps on two computers, for a multi-player game experience or to share content, such

as photos or links.

Proximity Connections

There are several ways to communicate by using Proximity:

Term Description

Out-of-band sessions You can establish a session using the PeerFinder object,

which connects devices over an out-of-band transport

(Bluetooth, Infrastructure network, or Wi-Fi Direct). While

the range for a tap is limited to 3-4 centimeters, the range

for out-of-band transport options is much larger. You may

not need to include proximity in your app to share

resources. If Windows supports your sharing scenario, then

enable the Sharing contract and use built-in Windows

functionality to share resources by using tapping.

Browse for Peers You can establish a session by using the

PeerFinder.FindAllPeersAsync() method. This method

finds all remote peers that are running the same app, if they

have also called the PeerFinder.Start() method to

advertise that they are available for a peer session. Browsing

for peers does not use a tap gesture, but instead uses Wi-Fi

Direct to discover the remote peer establish a connection.

Publishing and subscribing for

messages

You can send or receive messages during a tap gesture by

ProximityDeviceusing the object.

If an app calls the ConnectAsync method to create a connection with a peer, the app will no

longer advertise for a connection. The app will not be found by the FindAllPeersAsync()

method until the app calls the StreamSocket.Close method to close the socket connection.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

256

You will only find peers where the computer is within wireless range and the peer app is running

in the foreground. If a peer app is running in the background, proximity does not advertise for

peer connections.

If you open a socket connection by calling the ConnectAsync method, only one socket

connection can be open at a time for the computer. If your app, or another app calls the

ConnectAsync method, then the existing socket connection will be closed.

Each app on your computer can have one open connection to a peer app on another computer

if that connection was established using a tap gesture. You can open socket connections from

one app to a peer app on multiple computers by tapping each computer. If you create a

connection by using a tap gesture, a new tap gesture does not close the existing connection.

You must call the StreamSocket.Close method of the socket object to create a new connection

to the same peer app on the same peer computer by using a tap gesture.

Best practices

The overall feel of a proximity experience should be easy, lightweight, and intuitive. Users should

go through minimal setup to participate in a proximity experience. Once a proximity experience

is over, exiting the experience should be as sleek as entering it. Proximity is intended for an app

that just wants a connection with another instance of itself, without being concerned about the

details of the connection. If an app needs constant updates about the connection (for example:

bandwidth usage, speed), then do not use proximity.

Term Description

Finding Peers When your app browses for other peers that are running

the same app, do not continuously browse for peers.

Instead, provide the user an option to browse for peers

within Wi-Fi range.

Ask for consent Always ask for user consent to start a connected proximity

experience, that is, to put an app in multi-user mode. While

users are running an app, asking for consent should be

forward and dismissible. For example, two people playing a

game could be given a chance to provide consent before

they decide to play together. In cases where a tap occurs as

the app launches, users should be given a chance to

provide consent in the start menu or lobby of the app.

Show the state of the When a user puts an app in multi-user mode, the UI should

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

257

connection reflect one of three connection states:

 Waiting for a tap

 Connecting devices (show progress)

 Devices now connected, or connection failed

Revert to single-user mode

after a failed connection

If a connection breaks or fails to establish, convey this

information to users by putting the app back into single

user mode and displaying a message to indicate that the

connection has failed.

Keep the user in control Ensure that users can easily navigate out of a proximity

experience.

Proximity only creates

StreamSocket objects for
network connections

If your app requires a different type of connection object

than a StreamSocket object, you cannot use Proximity to

connect.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

258

Guidelines for developing print-capable apps

The following table explains these recommended practices.

Don’t add an in-

app print button

unless it is

required.

This ensures that the users invoke the print experience through the

Devices Charm.

If printing is the natural completion of a particular workflow, it is

appropriate to add an in-app print button at an appropriate location.

For example, it would be practical to add a button for printing a

boarding pass after an airline check-in workflow.

Do keep error

messages to two

lines max.

When a user makes an invalid entry in the Print window, you can display

an error message. Alert the user about the invalid entry, and let them

know what to do. As a best practice, we recommend that you keep the

information in the error message window to a maximum of two lines.

Best practices for deciding how to create your printed content

You have a fair amount of flexibility when deciding how to generate your print content. In most

cases it is easiest to print by using the same technology in which you are developing the rest of

your app.

However, you may find that different printing technologies are better for different things. While

you may use HTML5 and JavaScript with a custom print template, you may find that the layout

functionality of XAML printing is easier to manage. Or you may discover that you want to lay out

the printed content pixel by pixel, for which the Direct2D print control provides richer support.

Best practices for using a custom print template with HTML Content

A Windows Store app can use a custom print template to customize the preview and print

layout of a document. The following table shows the recommended practices for using a custom

print template.

Do make sure that the

preview and print layout

dimensions are correct.

Changes in printer settings can cause a change in paper size.

Therefore, read the current values for pageWidth and

pageHeight before pagination. This ensures a correct preview

and print layout.

Do make sure that preview Because you can use code to control the preview content that is

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

259

content shows up correctly

in the print window.

shown to the user, you must make sure that the preview

content shows correctly for different combinations of paper size

and orientation values.

Best practices for customizing settings in the print window

Customizing the settings in the print window gives the app developer the flexibility to change

how the printer settings (and options) are presented to the user. The following table explains

these recommended practices.

Practice Description

Do not change the order

of the settings shown in

the print window unless

it is necessary.

The order of the settings shown to the user is customizable.

However, to maintain consistency in the experience, you are

encouraged to retain the default order of the settings and add

more settings to the list if necessary.

For example, the Copies settings are listed first in the default print

experience, and users expect this listing order in your app’s print

experience too.

Do not add more printer

settings to the print

window unless it is

necessary.

Some printer settings and their behavior can be specific to the

printer. It is better for the printer manufacturer to handle the

addition of such settings.

If the printer manufacturer made printer-specific settings available

for your printer, then users of your app can click More Settings in

the print window to invoke the Windows Store device app that

displays those additional settings (if this Windows store device

app has been installed).

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

260

Guidelines for the camera UI

The camera dialog is a touch-optimized, full-screen experience for capturing photos and videos

from an embedded or attached camera. People can crop their captured photos and trim their

captured videos before returning them to your calling app. They can also adjust some of the

camera settings such as brightness, contrast, and exposure.

Appropriate use of the camera UI

Use the camera UI if your app requires live photo or video. For instance, you can use the camera

UI to let users take a photo of themselves for their profile pic.

Inappropriate use of the camera UI

 Don’t use the camera dialog if you need to have real-time feedback or control over the

image that is being captured. For example, a barcode reader might want to immediately

let the user know that a pic of a bar code isn’t readable. In this case the camera dialog

would not be the right option because it doesn’t provide direct control over the captured

video stream. Use Media Capture instead.

 Don’t use the camera dialog if you need to add custom controls to the user interface.

Instead, use Media Capture if you need to add UI customizations beyond what the

camera dialog provides.

 Don’t turn on cropping or trimming in the camera dialog if your app provides those

features. Video or photo editing apps, for example, should turn off trimming and

cropping so that your apps features aren’t redundant with what the camera dialog

provides.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

261

Guidelines for developing audio-aware apps

The following table presents the practices recommended when you add and configure media

buttons in a Windows Store app.

Practice Description

Design your button-press event

handlers to respond with the

least amount of delay possible.

This makes sure that the user immediately gets verification

of their button input. Long delays in response cause the

user to press buttons multiple times, resulting in

unexpected app behavior.

Make sure that the media

buttons are used in their

standard ways.

This makes sure that the user has a familiar experience with

the use of the media buttons.

Make sure that you do not use

track and artist name strings

that are longer than 127

characters.

When you configure your app to display track metadata,

make sure that the strings for track name and artist name

have a maximum length of 127 characters.

If you use track and artist name strings that are longer than

127 characters, it will result in an error condition. If your

app does not handle this error properly, it could cause the

app to stop functioning.

Best practices for using playback manager in an app

The following table presents the practices recommended for configuring audio/video (AV)

streams, and working with playback manager.

Practice Description

You must only consider using

the msAudioCategory

assignment if you need audio to

play in the background.

Audio playback drains the battery, so unless there is a clear

need for background audio (media playback designed for

longer term listening, for example) do not declare an audio

category. Alternatively, you can use the "Other" category.

Otherwise, your app will be muted and then suspended.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

262

Use low-latency audio only

when it is needed for specific

apps that require it (including

multi-track recorders and low-

latency video capture).

Low-latency audio is automatically invoked when you

select the "Communications" audio category. For any other

category, consider leaving low-latency settings at their

default (which is OFF). Low-latency buffers use significantly

more CPU and battery resources, and are typically reserved

for foreground apps on which the user is focused.

You can use ForeGroundOnly

media to mute playback of

background media.

If you develop a game that plays its own audio soundtrack,

the soundtrack will be muted if the user was already

playing an audio track in the background when the game

started. If you believe that the game's audio soundtrack is

essential for the function of the game, you can choose

ForeGroundOnlyMedia as the msAudioCategory for this

soundtrack. This mutes the currently playing background

audio. SoundEffects that are mixed in with background

media will still be heard in either case.

ForeGroundOnlyMedia can also be selected for video apps

that should stop background media when the video starts,

and should not run at all when they are in the background.

Best practices for managing call control

The following table presents the practices recommended for managing call control on the

default Bluetooth communications device.

Practice Description

You must make call control

functionality predictable for

communications apps.

This ensures that the user has an experience that is

familiar and seamless. If your app uses call buttons in

an unfamiliar way, make it very obvious to the user.

Track call tokens carefully. Make

sure you end the call correctly for

the device, and also end the

audio/video stream.

Doing this helps you make sure that when the call is

completed, you send an "endcall" notification back to

the device, with the appropriate call token. That way

the user has an indication from the device that the call

has ended.

TOUCH, COMMANDING, AND CONTROLS

Charms, contracts, and devices

© 2012 Microsoft. All rights reserved. | August 14, 2012

263

TOUCH, COMMANDING, AND CONTROLS

Animations

© 2012 Microsoft. All rights reserved. | August 14, 2012

264

Animations

List animations

List animations let you insert or remove single or multiple items from a collection such as a

photo album or a list of search results.

Appropriate use of list animations

 Use list animations to add a single new item to an existing set of items. For example, use

them when a new email arrives or a new photo is imported into an existing set.

 Use list animations to add several items to a set at one time. For example, use them

when you import a set of new photos into an existing collection. The addition or deletion

of multiple items together should happen all at the same time, with no delay between

the action on the individual objects.

Inappropriate use of list animations

 Don't use the list animations to display or remove a container. These animations are for

members of a collection or set that is already being displayed. Use one of the UI

animations to show or hide a transient container on top of the app surface. Use the

transition animations to display or replace a container that is part of the app surface.

 Don't use the list animations on an entire set or collection of items. Use the transition

animations to add or remove an entire collection within your container.

Transition animations

Transition animations move either entire pages into or out of view or sets of content onto or out

of pages.

Appropriate use of content transitions

 Use transition animations when there is a set of new items to bring into an empty

container. For example, after the initial load of an app, part of the app's content might

not be immediately available for display. After that content is ready to be shown, use a

content transition to bring that late content into the view.

 Use transitions to replace one set of content with another set of content that already

resides in the same container within a view. For example, when the user switches from a

"Latest Issues" view to a "My Issues" view in this magazine app, use enterContent for

the content replacement.

TOUCH, COMMANDING, AND CONTROLS

Animations

© 2012 Microsoft. All rights reserved. | August 14, 2012

265

 Slide the content into the view against the general page flow or reading order. For

instance, if the animation is to bring new content to a document that flows from left to

right, then the incoming content should move in from right to left.

 If you have more than one container with content to be updated, trigger all of the

transition animations simultaneously without any staggering or delay.

Inappropriate use of content transitions

 Don't use content transitions to bring in an entire new container. If the content's

container is not visible on the screen, use one of the transient UI animations, either

showPopup (for floating UI) or fadeIn (for UI on the main app surface) to bring on the

container. After the container is in place, use enterContent for content inside that

container.

Appropriate use of page transitions

 Use page transitions to bring in your initial content when your app is launched.

 Slide the content into the view against the general page flow or reading order. For

instance, if the animation is to bring a new "page" in an app that flows from left to right,

then the incoming content should move in from right to left.

 If there is more than one content region in your new page, choose the transition order

so that new content appears in each region in the order in which it would be read. For

instance, if the reading order is left to right, the content regions should be ordered top

to bottom, then left to right.

 If some of the content on the incoming page is not ready to display immediately, use a

page transition to bring in the empty container. Then use a content transition to bring

the content into the page.

Inappropriate use of page transitions

 Don't use page transitions when there is already content on the screen. If there is already

content on the page, use content transitions instead.

Drag-and-drop animations

Drag and drop animations help you create great animations when people start to move a drag-

able UI item, drag the object between other UI items, and drop the UI item.

Appropriate use of drag and drop animations

 Include in the animation only those UI items that people can drag

TOUCH, COMMANDING, AND CONTROLS

Animations

© 2012 Microsoft. All rights reserved. | August 14, 2012

266

 Allow some object movement before triggering the animation to start a drag-and-drop

sequence. This prevents the user from accidentally dragging an object that they meant

to only tap or select. The recommended threshold is 20 touch independent pixels (TIPs).

 When dropping an item to reorder a list, combine animations to reposition existing items

in the list to make room for the item that is being dropped. For example, after using a

drag and drop animation to drop an item into a list, use a list animation, like

createAddToListAnimation or AddDeleteThemeTransition, to move all elements into

their proper positions.

 Similarly, you can use an animation like fadeOut when a file is dropped into a folder to

make the file disappear from the screen.

 When the user drags an object to an area where it can be dropped between two other

objects, ensure that the other objects shift enough to communicate the drop target area

to the user. For JavaScript apps, dragBetweenEnter is the preferred animation.

 Create a drop target area that is large enough. This area should not be so small that it is

difficult for the user to position the drag source.

Inappropriate use of drag and drop animations

 Do not use drag and drop animations if the drag source cannot be dropped in an area.

Transient UI animations

Transient UI is meant to appear and disappear to notify users or help users complete a

contextually relevant task. Common transient UI include popups and UI items that fade in and

fade out.

Appropriate use of transient UI animations

 Use the popup animations for custom context menus, dialog boxes, flyouts, tooltips, or

other contextual UI that not a part of app page itself.

 Use fade in and out animations to show or hide controls on the app page or inside

existing containers on the page. For example, fade in a scroll bar when the cursor nears

the bottom of the screen.

 Use fade in and out animations to show or hide UI elements that don't have a specific

recommended animation.

TOUCH, COMMANDING, AND CONTROLS

Animations

© 2012 Microsoft. All rights reserved. | August 14, 2012

267

Inappropriate use of transient UI animations

 Don't use pop-up animations for UI that is part of the main app surface. The pop-up

animations are used to show UI that floats above the main app surface, such as a dialog

box. If your UI is part of the main app surface instead of above it, use one of these

alternatives:

Action Animation

To change the contents of a UI container Content transitions

For controls or if no other animation applies Fade in and out transient animations

 Don't use pop-up animations for common controls provided by Windows such as the

dialog, flyout, tooltip, or context menu controls. These common controls have the pop-

up animations built in. You do not need to provide the animations yourself. You only

need the pop-up animations if you are creating a custom control.

 Don't use fade in and out animations for UI elements that have another recommended

animation. The following table shows specific JavaScript animations recommended for

specific UI elements. XAML apps have similar animations. These elements should not use

fade animations.

UI type Recommended animation

Dialog box showPopup hidePopup and

Flyout showPopup hidePopup and

Tooltip showPopup hidePopup and

Context menu showPopup hidePopup and

Command bar showEdgeUI hideEdgeUI and

TOUCH, COMMANDING, AND CONTROLS

Animations

© 2012 Microsoft. All rights reserved. | August 14, 2012

268

Task pane or edge-based panel showPanel hidePanel and

Contents of any UI container enterContent exitContent and

 Common controls provided by Windows, such as dialogs, flyouts, tooltips, context

menus, and the app bar, have the recommended animations already included. You do

not need to provide the animations yourself.

Edge-based UI animations

Edge-based animations help bring in UI from the edge of the screen. The most common uses

are for custom app bars and message bars.

Appropriate use of edge UI and panel animations

 showEdgeUIUse edge animations like to show a message bar or a custom command

bar that does not extend far into the screen.

 Use showPanel to show UI that slides a significant distance into panel animations like

the screen, as in the case of a task pane or a custom keyboard.

 Slide the UI in from the same edge that it is attached to.

 Slide the UI out to the same edge that it came in from.

 If the contents of the app need to resize in response to the UI sliding in or out, use an

animation like crossFade to create a seamless animation. For example:

Inappropriate use of edge UI and panel animations

 Don't use edge or panel animations for any UI container or control that is not at the

edge of the screen. These animations are used only for showing, resizing, and dismissing

UI at the edges of the screen. To move other types of UI, use the reposition animations.

TOUCH, COMMANDING, AND CONTROLS

Animations

© 2012 Microsoft. All rights reserved. | August 14, 2012

269

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

270

APP ACTIVATION

People activate your app in a number of ways. They can tap on your app tile and secondary tiles,

or tap on items that can be activated, like files or protocols. Tiles are like the front door to your

app. You want to engage people with your tile so they are more likely to launch your app. Each

time people do tap your tile, you launch your app and briefly display a splash screen so you can

load their last app state by using roaming app data. That way, people are taken to right where

they left off.

The guidelines in this section help you create a great experience around launching, suspending,

and resuming your app from tiles and file and protocol activation.

Tiles
A tile is an app's representation on the Start screen. A tile allows you to present rich and

engaging content to your user on Start when your app is not running. Tapping or clicking the

tile launches the app. Tiles come in two sizes: square and wide. Several template variations are

provided for each size, with text, images, or a combination of text and images. Templates can

have a single frame or two stacked frames, which is called a peek template. A tile based on a

peek template animates between the two frames within the tile space. Single-frame templates

do not animate.

In one corner, a tile can optionally show branding, as the app's name or a small logo image.

Tiles can be live (updated through notifications) or you can leave them static. Tiles begin as a

default tile, defined in the app's manifest. A static tile always displays the default content, which

is generally a full-tile logo image. A live tile can update the default tile to show new content, but

if the update expires or is removed, it can return to the default. In the corner opposite to its

branding, a tile can also display a status badge, which can be a number or a glyph.

Two important points to always remember:

 If you use a wide tile, the user can resize the tile from wide to square or square to wide

at any time. You don't know which size is displayed.

 The user can turn tile notifications off and on at any time.

User experience guidelines

This section talks about design considerations that you should keep in mind when you plan the

look and use of your tiles

 Tile design philosophy

 Choosing between a square and wide tile size

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

271

 Using default tiles

 Using peek templates

 Other design considerations

 Using tile update notifications

Tile design philosophy

Your goal is to create an appealing tile for your app. If you use a live tile, your goal is to present

engaging new content that the user wants to see on their Start screen, and that invites them to

launch the app. To that end, avoid the overuse of loud colors. Simple, clean, elegantly designed

tiles are more successful than tiles that scream for attention like a petulant child.

When designing your app, you might ask yourself "Why should I invest in a live tile?" There are

several reasons:

 Tiles are the "front door" to your app. A compelling live tile can draw users into your app

when your app is not running. A user increasingly values an app that they use frequently.

 A live tile is a selling point that differentiates your app from apps on operating systems

that allow only static tiles and icons on their Start screen.

 A live tile is a selling point that differentiates your app from other apps in the Windows

Store. Users are likely to prefer the app with the great live tile to a similar app with a

static tile.

 If users like your live tile, a prominent placement of that tile in Start drives re-

engagement with your app. Chance discovery of cool content in the app through the tile

makes users happy.

 If users don't like your tile, they might place it at the end of Start or unpin it altogether,

turn off updates, or even uninstall your app.

Some characteristics that make a live tile compelling are:

 Fresh, frequently updated content that makes users feel that your app is active even

when it's not running.

Example: Showing the latest headlines or a count of new e-mails.

 Personalized or tailored updates that use what you know about the user, such as

interests that you allow the user to specify through app settings.

Example: Deals of the day tailored to the user's hobbies.

 Content relevant to the user's current context.

Example: A traffic condition app that uses the user's current location to display a relevant

traffic map.

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

272

Choosing between a square and wide tile size

A square tile is required. You must decide whether you want to allow for a wide tile as well. This

choice is made by providing a wide logo image when you define your default tile in your

manifest. If you do not include a wide logo image, your tile is always square. The user cannot

resized it and it cannot accept wide update notifications.

 Use only a square tile if your app does not use tile notifications to send updates to the

user. Wide tile content should always be fresh and regularly updated. If you aren't using

a live tile, do not provide a wide logo in the manifest.

 Use a square tile with a badge if your app supports only scenarios around short summary

notifications. These are notifications that can be expressed through only a badge image

or a single number. For instance, an SMS app that plans to use notifications to

communicate only the number of new texts received would fit this scenario. Do not

provide a wide logo in the manifest.

 Use the square size if your app sends updates that should not be shown in detail on the

Start screen. For instance, a paystub app could simply say that a new paystub is available

instead of mentioning specifics such as the amount. Do not provide a wide logo in the

manifest.

 Use the wide size tile only if your app has new and interesting content to display to the

user, and those notifications are updated frequently (at least weekly).

 Square tiles show less content than wide tiles, so prioritize your content. Don't try to fit

everything that you can show in a wide tile into a square tile.

If you have wide tile content that consists of an image plus text, you can use a square peek

template to break the content into two frames.

Using default tiles

An app's default tile is defined in its manifest. It is static, square, or wide, and simple in design.

For some apps, the default tile is all that you ever need. When an app is installed, the default tile

is shown on the Start screen until that tile receives an update notification. If a wide logo image is

provided, the wide tile is used. An update can expire or be explicitly removed, in which case the

tile reverts to the default content until the next notification arrives.

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

273

Appropriate use of default tiles

 Use the default tile image to reflect your app's brand, essentially as a canvas for your

app's logo.

 If you are including a wide logo, consider the design relationship between the wide and

square tile images that you provide. Always remember that the user can display your tile

as either square or wide, and can change that option at any time. Here are some general

rules:

 Center the logo horizontally in the tile.

 Keep the same vertical placement of the logo in both the square and wide tiles,

which are of equal height.

 Include the app name at the bottom of the tile if your logo does not include it.

The following examples show both situations.

Tiles using the app name element defined in the manifest:

Tiles that include the app's name in the logo image:

 For apps with longer names, and because the name can wrap over two lines,

make sure that your logo image and the name do not overlap. A safe approach is

to restrict your logo to about 80x80 pixels in the 100% image resource.

 If you make the space around the logo itself transparent in your image, your

app's brand color (declared in the manifest) shows through. A gradient is applied

to it as part of the Windows 8 look. This tactic would be used with a logo such as

the mail app tile shown earlier.

Inappropriate use of default tiles

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

274

 Don't design the default tile to include an explicit text call to launch the app, such as a

tile that says "Click Me!"

 If your logo contains your app's name, don't repeat that name in the name field. Use one

or the other, as shown here:

Using peek templates

Peek templates supply tile content which cycles between two frames of information within the

tile space. The upper frame is an image or image collection, and the lower frame is text or text

plus an image.

Appropriate use of peek templates

 Use peek templates if your scenario has both primary and supplementary content and

contains both images and text. Good examples include notifications for an e-mail that

included a photo or a news story with a picture/header/body layout.

 A peek template grabs the user's attention when it animates, so be sure that it provides

desirable content. Otherwise, you will annoy your user.

 When you use a peek template, its display can start at either end (frame) of its cycle—

text fully lowered or text fully raised. It can also animate up or down to the other frame.

Therefore, make sure that the contents of each of your frames can stand alone.

Inappropriate use of peek templates

 Don't use peek templates to display information about things the user already knows

about. For example, a paused video notification shown on a tile shouldn't use a peek

template.

 Don't use peek templates for notifications that are not conceptually grouped. For

example, a peek template should never be used to send a news story if the photo or

photos are not part of that story.

 Don't use peek templates if the most important part of your notification could be off-

screen due to the peek animation. For example, a weather app may display the

temperature and an accompanying image, such as a smiling sun or a cloud. Using a peek

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

275

template would mean that the temperature (the purpose of the notification) isn't always

visible. A static template that shows the image and temperature at the same time would

be more useful to the user.

Other design considerations

 When determining how to convey an app's brand information in a tile, choose either the

app's name, as shown here:

or logo image, as shown here:

These items are originally defined in the app manifest and the developer can choose

which of the two to display in each subsequent notification. However, after you make the

choice of name or logo, stick with it for the sake of consistency.

 Don't use the image or text elements to display app branding information in a tile

update notification. To reinforce your app's brand and provide consistency to the user,

branding should be provided through the template's elements that are provided for that

purpose: the app name (short name), or a logo image. A live tile can change its

appearance considerably from notification to notification, but the location of the

name/logo is consistent. This consistency ensures that users can find their favorite apps

through a quick scan, seeing that information in the same place on each tile. If your app

doesn't leverage the provided branding elements (name and logo), then it can be harder

for users to quickly identify your app's tile.

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

276

The following images show tiles that use the template's text and image elements to

inappropriately convey branding. In both cases the tiles are also using the name or logo

as designed, so the additional branding is redundant information.

 Don't use branding as one of the items in the notification queue or as one of the frames

in a peek template. Both of these scenarios involve animated changes to the tile, which

catches the user's eye. Calling the user's attention through an animation simply to

display your brand instead of interesting new content only annoys that user.

 If your app's name does not fit in the space provided by the optional "short name", use a

shorter version or a meaningful acronym. For example, you could use "Contoso Game"

for the very addictive "Contoso Fun Game Version 3". Names that exceed the maximum

number of pixels are truncated with an ellipsis. The maximum name length is

approximately 40 English characters over two lines, but that varies with the specific

letters involved. We encourage shorter app names from a design standpoint. You can

also specify a longer name for your app (the "display name") in your manifest. This name

is used in the "All apps" view and in the tooltip, though not on the tile.

 Don't use tiles for advertisements.

 Avoid the overuse of loud colors in tiles. Simple, clean, elegantly designed tiles are more

successful than those that scream for attention like a petulant child.

 Don't use images with text on them; use a template with text fields for any text content.

Text in an image does not look as sharp as rendered tile text. If an image asset isn't

provided that is appropriate to the current display, the image might be scaled, which can

further degrade its legibility.

 Don't rely on tiles to send urgent, real-time information to the user. For instance, a tile is

not the right surface for a communication app to inform the user of an incoming call.

Toast notifications are a better medium for messages of a real-time nature.

 Avoid image content that looks like a hyperlink, button, or other control. Tiles do not

support those elements and the entire tile is a single click target.

 Don't use relative time stamps or dates (for instance, "two hours ago") on tile update

notifications because those are static while time moves on, which makes the message

inaccurate. Use an absolute date and time such as "11:00 A.M.".

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

277

Choosing the right notification method to update your tile

There are several mechanisms which can be used to update a live tile:

 Local API calls

 One-time scheduled notifications, using local content

 Push notifications, sent from a cloud server

 Periodic notifications, which pull information from a cloud server at a fixed time interval

The choice of which mechanism to use largely depends on the content you want to show and

how frequently that content should be updated. Most apps will probably use a local API call to

update the tile when the app is launched or the state changes within the app. This local call

makes sure that the tile is up-to-date when it launches and exits. The choice of using local, push,

scheduled, or polling notifications, alone or in some combination, completely depends upon the

app. For example, a game can use local API calls to update the tile when a player reaches a new

high score the player. At the same time, that same game app could use push notifications to

send that same user new high scores achieved by their friends.

How often should your tile update? If you choose to use a live tile, consider how often the tile

should be updated.

 For personalized content, such as message counts or telling whose turn it is in a game,

we recommend that you update the tile as the information becomes available. This is

particularly true if the user would notice that the tile content was lagging, incorrect, or

missing.

 For non-personalized content, such as weather updates, we recommend that the tile be

updated no more than once every 30 minutes. This frequency allows your tile to feel up-

to-date without overwhelming your user.

Appropriate use of tile notifications

 Use what you know about the user to send personalized notifications to them through

the tile. Tile notifications should be relevant to the user. The information you have to

work with is largely internal to your particular app and could be limited by a user's

privacy choices. For example, a television streaming service can show the user updates

about their most-watched show. Or, a traffic condition app can use the user's current

location (if the user allows that to be known) to show the most relevant map.

 Send frequent updates to the tile so the user feels that the app is connected and

receiving fresh, live content. The cadence of tile notifications depends on your specific

app scenario. For example, a busy social media app might update every 15 minutes, a

weather app every two hours, a news app a few times a day, a daily offers app once a

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

278

day, and a magazine app monthly. If your app updates less than once a week, consider

using a simple square tile with a badge to avoid the appearance of stale content.

 Provide engaging and informative tile notifications so that users can make an informed

decision about whether they need to launch your app. In general, a notification is an

invitation to the user to launch the app for more details or to do something. For

example, a notification might cause the user to want to respond to a social media post,

read a full news story, or get the details about a sale.

 Send notifications about content hosted on the home or landing page of your app. That

way, when the user launches your app in response to your notification, they can easily

find the content that the notification was about.

Inappropriate use of tile notifications

 Don't use live tiles if you don't have interesting, new, personalized content for the user. A

calculator app, for instance, just isn't going to have that.

 Don't use live tiles if the only interesting thing to communicate is the user's last state.

Utility apps, developer tools like Microsoft Visual Studio, and browsers that would only

show thumbnails of the user's last session should not use live tiles.

 Don't use live tiles to spam the user or show advertisements. That will get you kicked out

of the store.

Choosing a badge image

A badge can display either a number from 1-99 or a status glyph.

Note The badge catalog is not extendable. Only the Windows-provided images listed here can

be used on a tile.

Numeric badges

A number from 1 to 99

Glyph badges

Status Glyph

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

279

none No badge shown

activity

alert

available

away

busy

newMessage

paused

playing

unavailable

error

attention

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

280

Guidelines for badges

Appropriate use of badges

 Use the square tile size with badges if your app supports only scenarios with short

summary notifications. For instance, a short message service (SMS) app that plans to

show only the number of new texts received.

 Display a number on your badge when the number is small enough to be meaningful in

your scenario. If your badge is likely to always display a number of 50 or higher, then

consider using a system glyph. Strategies to make a badge number less overwhelming

include showing the count since the user last launched the app rather than the absolute

count. For instance, showing the number of missed calls since the user last launched the

app is more useful than showing the total number of missed calls since the app was

installed.

 Use one of the provided system glyphs to indicate a change in cases where a number

would be unhelpful or overwhelming. For instance, the number of new unread articles on

a high volume RSS feed can be overwhelming. Instead, use the newMessage system

glyph.

 Use a glyph if a number is not meaningful. For instance, if the tile shows a "paused"

notification for a playlist, it should use the paused glyph because a number doesn't make

any sense for this scenario.

 Use the newMessage glyph in cases where a number is ambiguous. For instance, "10" in a

tile badge for social media could mean 10 new requests, 10 new messages, 10 new

notifications, or some combination of them all.

 Use the newMessage glyph in high-volume scenarios, such as mail or some social media,

where the tile's badge could be continually displaying the maximum value of 99. It can

be overwhelming for the user to always see the maximum value and it conveys no useful

information by remaining constant.

Inappropriate use of badges

 Don't repeat badge numbers elsewhere in a wide tile's body content, because the two

instances could be out of sync at times.

 Don't use a glyph if what the glyph tells the user never changes. Glyphs represent

notifications and transient state, not any sort of permanent branding or state.

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

281

Guidelines for secondary tiles

Only users can create a secondary tile; apps cannot create secondary tiles programmatically.

Users also have explicit control over secondary tile removal, either on the Start screen or

through the parent app.

Appropriate use of secondary tiles

 Secondary tiles, like all tiles on the Start screen, are dynamic outlets that should be

frequently updated with new content. Secondary tiles can surface notifications and

updates by using the same mechanisms as any other tile. To update the tile when the

app is not running, the secondary tile must request and open a channel Uniform

Resource Identifier (URI) with the Windows Push Notification Services (WNS).

 While the choice to create a secondary tile is entirely the user's, the developer

determines the areas in the app that are offered to them to pin. The developer should

follow these guidelines:

 If the content in focus is already pinned, the app bar should show and enable the

pin button (as the "unpin button") so that the user can use it to unpin the pinned

content.

 If the content in focus is not pinnable, the app bar pin button should not be

shown. If the app exposes the pin command outside of the app bar, the app bar's

pin button should either not be shown or be shown in a disabled state. The

choice between disabling or not showing the pin button depends on the UI

surface and scenario where the pin button appears when it is enabled.

 Use the system-provided glyphs for pin and unpin.

 Developers can also add contextual interactions specific to their app that create

secondary tiles.

 The app should use meaningful, recreatable IDs for secondary tiles. This type of ID is

important for the following reasons:

 Users can reacquire secondary tiles when the app is installed on a second

computer. When you use predictable secondary tile IDs that are meaningful to an

app, it helps the app understand what to do with these tiles when they are seen

in a fresh installation on a new computer.

 At run time, the app can query whether a specific tile exists.

 The secondary tile platform can be asked to return the set of all secondary tiles

that belong to a specific app. Using meaningful IDs for these tiles can help the

app to examine the set of secondary tiles and perform appropriate actions. For

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

282

instance, for a social media app, IDs could identify individual contacts for whom

tiles were created.

Inappropriate use of secondary tiles

 Don't use secondary tiles as shortcuts to discrete files that cannot change, or to other

static content.

 Don't use a secondary tile as a virtual command button to interact with the parent app,

such as a "skip to next track" tile.

Guidelines for lock screen apps

Lock screen basics

To determine whether your app is a good candidate for a lock screen presence, you must

understand the operation and limitations of the lock screen.

 A maximum of seven app badges can appear on the lock screen. The badge information

reflects the badge information on the app's Start screen tile. The badge (either a glyph or

a number) is accompanied by a monochrome icon (logo image) to identify the app the

badge is associated with.

 Only one of those seven apps can occupy a detailed status slot, which allows it to display

the text content of the app's most recent tile update.

 The lock screen's detailed status tile does not show images included in that tile update.

 The user is in charge of which apps can display information on the lock screen, and

which one of those apps can display detailed status.

 All apps that have a lock screen presence can also run background tasks. All apps that

can run background tasks have a lock screen presence. An app cannot use background

tasks without also claiming a slot on the lock screen.

 The notification queue is not supported by the lock screen's detailed status tile. Only the

latest update is shown.

 If an app has a lock screen presence and has set the Toast Capable option to "Yes" in its

manifest, it displays its received toast notifications on the lock screen when the lock

screen is showing. Toast shown on the lock screen is identical to toast shown elsewhere.

 Tile updates, badge updates, and toast notifications are not designed for or sent to the

lock screen. You, as the sender, don't know if the device is locked. For an app with a lock

screen presence, any notification is reflected both on the Start screen and on the lock

screen.

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

283

Characteristics of a good lock screen presence

The only way that your app can have a lock screen presence is if the user gives their explicit

permission. They can give this permission either in response to a request from your app (and

you can ask only once), or manually through the Personalize page of PC Settings. By giving

that permission, the user declares that the information coming from your app is important to

them. Your app must then be worthy. Therefore, you must consider whether your app is a good

candidate to have a lock screen presence at all.

A good candidate for a lock screen presence has these attributes:

 The information is quickly digestible

 The information is always up-to-date

 The information is understandable without additional context

 The information should be personal and useful to the user

 The information should only display when there is a change

 Only toast notifications should play a sound on arrival

The information is quickly digestible

If the lock screen is displayed, the user isn't currently interacting with the device. Therefore, any

update information that your app displays on the lock screen should be something that the user

can take in and understand at a glance. As an analogy, think of an incoming call on a cell phone.

You glance at the phone to see who's calling and either answer or let it go to voice mail.

Information displayed on the lock screen should be as easy to take in and deal with as the cell

phone display. All of the other characteristics support this one.

The information is always up-to-date

Good badge updates, tile updates, and toast notifications, whether they're shown on the Start

screen or the lock screen, are all potentially actionable. Based on the information those

notifications provide, the user can decide whether they want to launch the app in response. For

example, to read a new e-mail or comment on a social media post. From the lock screen, that

also means unlocking the device. Therefore, the information needs to be up-to-date so that the

user is making an informed decision. If users begin to see that your app's information on the

lock screen is not up-to-date, then you've lost their trust. They'll probably find a more reliably

informative app to occupy that lock screen slot.

Good examples: up-to-date information

 A messaging app sends a notification when a new message arrives. If that notification is

ignored, the app updates its badge with a count of missed messages. If the user is

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

284

present, they can turn on the screen to assess the importance of the message, and

choose to respond promptly or let it wait. If the user isn't present, they will see an

accurate count of missed messages when they return.

 A mail app uses its badge to display a count of its unread mail. It updates the badge

immediately when a new mail arrives. A user can quickly turn on their screen to check

how many unread emails they have, and they can be assured that the count is accurate.

They have the information to decide if they want to unlock their device and read mail.

Bad examples: out-of-date information

 A messaging app updates its badge with its count of missed messages only once every

half hour. The user can't rely on the badge count in deciding whether they want to

unlock the device.

 A weather app that uses the detailed status slot continues to show a severe weather alert

after the alert has expired. This gives the user incorrect information. And, if the text

specifies when the alert ends, it makes it obvious to the user that this is old information.

The user loses confidence that the app is capable of keeping them properly informed.

The app should have cleared this information when it expired.

 A calendar app continues to display an appointment that has passed. Again, the app

should have cleared this information when it expired.

The information is understandable without more context

This contextual information is not present on the lock screen:

 The tile that goes with the badge, when the app is not allowed to display detailed status.

Even when detailed status is shown, the badge is physically separate from the tile. The

logo image next to a badge is the only identification of the app it represents.

 Images in tile updates. Only the text portion of the update is shown in the detailed status

slot.

 The notification queue. Only the most recent update is shown in the detailed status slot.

Therefore, your updates must be understandable to the user without the additional context

available to you on the Start screen. Again, keep in mind that notifications cannot be targeted at

the lock screen. Therefore, all of your app's update communications must fall under the

"understandable without more context" rule.

Note Unlike the detailed tile, toast includes both image (if present) and text. Toast displayed on

the lock screen is identical to toast displayed elsewhere, so it does not lose context.

Good examples: understandable without more context

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

285

 A mail app uses its badge to display the count of its unread mail. Its Start screen tile

might display more information, such as text snippets from the most recent mails or

pictures of the senders. But what the badge communicates is understandable without

that extra information.

 A social networking app uses the detailed status slot to inform the user of their friends'

recent activity. When a friend sends them a message, that friend's name is included in

the notification text (for instance "Kyle sent you a new message!"). On the Start screen,

the user can see a rich experience with their friend's picture in the update notification.

Meanwhile, on the lock screen, even though there is no image, the text still makes it clear

who sent the message.

Bad examples: not understandable without more context

 A messaging app updates its tile with the latest received message, and shows only the

sender's picture and the message text. On the Start screen, it is clear to the user who the

message is from. In the lock screen, without the sender's picture, the user has no idea

who sent the message.

 A social networking app updates its tile with a collage of photos, with no text. On the

Start screen this is a pleasant, lively tile. On the lock screen, because there is no text in

the tile update, nothing is displayed at all.

The information should be personal and useful to the user

Two of the main purposes of the lock screen are to provide a personalized surface for the user

and to display app updates. Consider both of these purposes when you judge whether your app

is a good candidate for a lock screen presence.

Apps with a lock screen presence are special—only seven can ever be on the lock screen at a

time. By giving an app one of those precious lock screen slots, the user is stating that

information coming from that app is important enough to be seen even when the user isn't

actively using their device. Therefore, the app should provide information that is both personal

and useful to the user.

Note By definition, the lock screen is displayed when the device is locked. No login or other

security hurdle is required to see the contents of the lock screen. Therefore, while the

information displayed there is ideally personalized, keep in mind that anyone can see it.

Good examples: information personalized to the user

 A mail app displays the number of unread emails in the user's account.

 A messaging app displays the number of missed messages sent to the user.

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

286

 A news app displays the number of new articles in categories that a user has flagged as

favorites.

Bad examples: impersonal information

 A news app displays the total number of new articles that come from its service, not

taking into account the user's stated preferences.

 A shopping app sends a notification about a sale, but not based on any item or category

preference that the user has given.

The information should display only when there is a change

As we said earlier, the goal is that information on the lock screen can be taken in at a glance. To

that end, if an app is not currently displaying a badge, a gap is left on the lock screen where that

badge would otherwise appear. This gap increases the ability of a user to notice something that

needs their attention. The appearance of a badge and logo following an event is more

noticeable than if it has been there all along.

Do not show status simply for the sake of showing status. Long-running or never-changing

status just clutters the lock screen, obscuring more important information. A badge should

display only when something has happened that the user should be aware of. The same is true

for a tile update. Remove stale notification content from your tile, which causes the tile to revert

to its default image on the Start screen and displays nothing on the lock screen.

Good examples: information displayed only when it's useful

 A mail app displays a badge only when there is unread mail. When new mail arrives, its

badge is updated and shown.

 A messaging app displays its connection status only when the user is unable to receive

messages. A "connected" status is the assumed default state of the app, so there is no

point in conveying that information. "Everything is fine" is not an actionable notification.

However, informing the user when they cannot receive messages is useful, actionable

information.

Bad examples: long-running status

 A mail or messaging app has no count of unread mail to display and so shows a

connection status until new mail or messages arrive. This ongoing display of connection

status decreases the user's ability to see at a glance whether they have a new message,

because the badge is always present.

APP ACTIVATION

Tiles

© 2012 Microsoft. All rights reserved. | August 14, 2012

287

 A calendar app displays a message that states that the user has no appointments. Again,

this decreases the at-a-glance usability of the detailed status slot, since something is

always displayed there.

Only toast notifications should play a sound on arrival

Do not include code in your app that plays a sound when your badge or tile updates. However,

an arriving toast can play a sound as it is designed to do.

By following the guidance described in this article, you will be able to create apps that display

the right information in the right way on the lock screen. You can thereby increase user

satisfaction and confidence in your app.

When to use the lock screen request API

Call the lock screen request API (RequestAccessAsync) only if your app truly needs background

privileges to function properly. Because there are only seven background slots available, users

must distinguish which apps truly need background privileges to function properly and which

work fine without them (even if they might gain additional functionality with the privileges).

If an app absolutely requires background privileges to meet user expectations, we recommend

that it uses the request API to prompt the user to place the app on the lock screen.

However, if an app meets user expectations without having background privileges, we

recommend that you do not explicitly prompt the user to place the app on the lock screen.

Instead, let the user place their app on the lock screen through the Personalize page of PC

Settings.

Examples of apps that should call the request API:

 A messaging app that requires background privileges to receive messages when the app

is not in the foreground

 A mail app that requires background privileges to sync the user's inbox when the app is

not in the foreground

Examples of apps that should not call the request API:

 A weather app that uses periodic notifications rather than background activity to update

its forecast

 A news app that refreshes its badge count of new articles at a specific time of day

APP ACTIVATION

Basic app suspend and resume

© 2012 Microsoft. All rights reserved. | August 14, 2012

288

Basic app suspend and resume
Design your Windows Store app to suspend when the user switches away from it, and resume

when the user switches back to it. Carefully consider the purpose and usage patterns of your

app to ensure that your user has the best experience possible when your app is suspended and

resumed. Most Windows Store apps should stop what they are doing when the user switches

away from them. Very few apps should continue to run after the user switches away. For

example, a music player should continue to play music even after the user switches to another

app.

Use these guidelines to help you design the suspend and resume behavior of your app.

Do Generally, resume your app as the user left it rather than starting it fresh

It's a poor experience for users to have to start fresh every time they switch away to

another app and back to your app. Examples of situations where you should resume the

app as the user left it:

 Web browsing session

 Shopping cart

 Unfinished e-mail

 Paused movie or game

Start the app fresh if a long period of time has elapsed since the user last accessed it

If there's a good chance that users won't remember or care about what was happening

when they last saw your app, launch the app from its default launch state. You must

determine an appropriate period after which your app should start fresh. If there is any

doubt about whether to resume or start fresh, you should resume the app right where

the user left off.

Examples of situations where it's better to start fresh:

 Newsreader where the user would be brought back to a very old or stale article

 Weather app where the data is stale

Save app data when the app is being suspended

Explicitly saving your app data helps ensure that the user can resume your app even if

Windows terminates or suspends it. Suspended apps don't receive notification that they

are being terminated. So, it's a best practice to have your app save its state when it's

APP ACTIVATION

Basic app suspend and resume

© 2012 Microsoft. All rights reserved. | August 14, 2012

289

suspended, and restore its state when it's launched after termination.

Release exclusive resources and file handles when the app is being suspended

Explicitly releasing exclusive resources and file handles helps ensure that other apps can

access them while your app isn't using them. Suspended apps don't receive notification

that they are being terminated. So, it's a best practice to have your app release its

handles when it's suspended and open its handles when it's launched after termination.

Examples of exclusive resources are webcams, I/O devices, external devices, and

network resources.

When resuming your app after it was suspended, update the UI if the content has

changed since it was last visible to the user

To the user, it should appear as though the app was running in the background.

When resuming your app after it was terminated, use the saved app data to restore

your app

Users expect to find the app as they left it, whether it was suspended or terminated by

Windows or closed by the user.

Provide users with options if you can't predict whether they want to resume or start

fresh

It might not always make sense to bring the app back to where it left off. Instead,

provide the user with a set of options for what to do next. For example, when the user

switches back to your game, you could display a prompt so the user can decide

whether to resume the game or start a new one.

Use these guidelines to avoid creating a poor user experience.

Don't Don't terminate the app when it's moved off screen

Windows ensures that there is a consistent way for the user to access and manage

Windows Store apps. Your app is suspended when it's moved off screen. By leaving

the app lifecycle to Windows, you ensure that your user can return to your app as

efficiently as possible. Doing so also provides the best system performance and

APP ACTIVATION

Basic app suspend and resume

© 2012 Microsoft. All rights reserved. | August 14, 2012

290

battery life from the device.

Don't restore state for an app that was terminated as the result of a crash

If your app was terminated unexpectedly, assume that stored app data is possibly

corrupt. The app should not try to resume but rather start fresh. Otherwise, restoring

corrupt app data could lead to an endless cycle of activation, crash, and termination.

Don't offer users ways to close or terminate your app in its UI

Users should feel confident that Windows is managing their apps for them. Windows

Store apps should not display Close buttons or other ways to exit the app. Windows

can terminate your app to ensure the best system performance and reliability. Also,

users can choose to close apps through a gesture.

APP ACTIVATION

Launch with file types and protocols

© 2012 Microsoft. All rights reserved. | August 14, 2012

291

Launch with file types and protocols
When opening a file or protocol, the user sometimes needs to use the Open With list to select

which app to use as the default. Windows 8 implements this list as a Flyout. Although you can't

customize the contents of the Open With Flyout, you can control its position in your app. Be

sure to follow the guidelines and position the Flyout near its point of invocation whenever

possible.

Here's an example of an ideal way to use the Flyout. Notice that it's located right next to the

button that called it.

You can present files and protocols however you see fit—typically as a thumbnail or a hyperlink.

The primary action for these items should be Open. This option should invoke the default

handler for the file or protocol, which might result in showing the Open With Flyout. (We

recommend that you assume that the Flyout appears in some cases and position it accordingly.)

If you choose to implement any secondary actions for files or protocols in your app, such as

Save As or Download, consider letting the user choose an alternate app from an Open With

Flyout.

Remember, Windows Store apps can't set, change, or query default apps for file types and

protocols, so you shouldn't try to add that functionality to your app.

APP ACTIVATION

Splash screens

© 2012 Microsoft. All rights reserved. | August 14, 2012

292

Splash screens
Every Windows Store app must have a splash screen, which consists of a splash screen image

and a background color. You can customize both of these features. Windows displays this splash

screen immediately when the user launches an app. This quick display of the screen provides

immediate feedback to users while app resources are initialized. As soon as your app is ready for

interaction, Windows dismisses the splash screen.

A well designed splash screen can make your app more inviting. The Splash screen sample uses

this simple, understated splash screen, shown here at 75% scale:

This splash screen is created by combining a blue background color with a transparent PNG.

Additionally, you can customize your app's launch experience by extending the splash screen

and triggering entrance animations.

Appropriate use of the splash screen

 Customize the splash screen to differentiate your app.

Your splash screen consists of an image and a background color, both of which you can

customize. A well designed splash screen can make your app more inviting.

Putting an image and background color together to form the splash screen helps the

splash screen look good, on any device form factor. When the splash screen is displayed,

only the size of the background changes to compensate for a variety of screen sizes.

Your image always remains intact.

APP ACTIVATION

Splash screens

© 2012 Microsoft. All rights reserved. | August 14, 2012

293

 Create an extended splash screen so that you can complete more tasks before showing

your app's landing page.

You can further control the loading experience of your app by creating an extended

splash screen that imitates the splash screen displayed by Windows. By imitating the

splash screen displayed by the system, you can construct a smooth and informative

loading experience for your users. For example, your app may need more time to

prepare its UI or load network data. You can then use your extended splash screen to

display more information as your app completes those tasks.

You can see an example of the users' loading experience in these images, progressing

from left to right. The screen shots show the transition from the splash screen displayed

by Windows, to the app's extended splash screen, and lastly to the app’s landing page.

SplashScreenTo learn how to use the class to create and show an extended splash screen, see
How to extend the splash screen.

Tip If you use fragment loading to load your extended splash screen, you see a flicker between

the time when the Windows splash screen is dismissed and when your extended splash screen is

displayed. You see this flicker because fragment loading begins to load your extended splash

screen asynchronously, before the activated event handler finishes executing. You can avoid

this unsightly flicker entirely by using the design pattern demonstrated by the Splash screen

sample. Instead of loading the extended splash screen as fragments, you paint it on top of the

app’s UI. When your additional loading tasks are complete, you can then stop displaying your

extended splash screen to reveal your app’s landing page. Alternatively, you may wish to

continue loading your extended splash screen as a fragment. In that case you can prevent the

flicker by getting an activation deferral and responding to activated events asynchronously. Get

a deferral for an activated event by calling the activatedOperation.getDeferral method.

Inappropriate use of the splash screen

 Don't use the splash screen or your extended splash screen to display advertisements.

The purpose of the splash screen is to let users know, while the app is loading, that the

app they wanted to start is starting. Introducing foreign elements into the splash screen

reduces the user's confidence that they launched the correct app and makes the app

harder to identify at a glance.

APP ACTIVATION

Splash screens

© 2012 Microsoft. All rights reserved. | August 14, 2012

294

 Don't use your extended splash screen as a mechanism to display multiple, different

splash screen images.

The purpose of the splash screen and extended splash screen is to provide a smooth,

polished loading experience for your users. Using your extended splash screen to display

multiple, different splash screen images distracts from this purpose and could be jarring

or confusing to your users. Instead, your extended splash screen should continue the

current loading experience only while other tasks are completed.

 Don't use the splash screen or your extended splash screen to display an "about" page.

The splash screen should not show version information or other app metadata. Display

this information in your app's Windows Store description or within the app itself.

User experience guidelines: splash screen

Use the following guidelines to help you customize the splash screen that Windows displays for

your app.

 Use an image that clearly identifies your app.

Use an image and color scheme that clearly identify your app, so that users are confident

that they launched the correct app. Making a unique screen also helps reinforce your

brand.

 Use a transparent PNG as your splash screen image for best visual results.

Using a transparent PNG lets the background color you chose show through your splash

screen image. Otherwise, if the image has a different background color, your splash

screen may look disjointed and unappealing.

 Provide a version of your splash screen image that is sized for all three scale factors.

All apps must have a splash screen image that is 620 x 300 pixels, for when the device

uses 1x scaling. We also recommend that you include more splash screen images for 1.4x

and 1.8x scaling. Providing images for all three scale factors helps you create a clean and

consistent launch experience across different devices.

APP ACTIVATION

Splash screens

© 2012 Microsoft. All rights reserved. | August 14, 2012

295

Use the following table to determine the required size the splash screen image for each

scale factor:

Scale Image size (pixels)

1x 620 x 300

1.4x 868 x 420

1.8x 1116 x 540

 Select an image that fills the space allotted for the splash screen image (for each scale

factor).

This helps you produce a splash screen that looks professional and has a positive impact

on your users’ loading experience.

 Choose an image that uses the area allotted by the system for the splash screen image.

When you choose a splash screen image, try to take advantage of the space allotted at

each scale factor. To determine the size of the splash screen image for each scale factor,

refer to the scale and image size table.

This helps you produce a high-quality splash screen, by ensuring the quality of the

image.

 Show system and event-related UI after the splash screen is dismissed.

You can determine when it is safe to show system or event-related UI by listening for the

splash screen dismissed event. Otherwise, the associated UI (like the search pane, a

message dialog, or web authentication broker) might show while the splash screen is

displayed. This might cause unwanted visual effects.

 Start entrance animations after the splash screen is dismissed.

Many apps wish to show content entrance animations each time the app’s landing page

is loaded. You can determine when to start your animations by listening for the splash

screen dismissed event.

User experience guidelines: extended splash screen

Use the following guidelines to help you create an extended splash screen that your app

displays while it completes additional loading tasks.

APP ACTIVATION

Splash screens

© 2012 Microsoft. All rights reserved. | August 14, 2012

296

 Make sure that your extended splash screen looks like the splash screen that Windows

displays.

Your extended splash screen should use the same background color and image as the

Windows splash screen. Use a consistent image and background color to ensure that the

transition from the Windows splash screen to your app's extended splash screen looks

professional and is not jarring for your users.

 Position your extended splash screen image at the coordinates where Windows

displayed the splash screen image.

 Adjust the position of your extended splash screen to respond to resize events like snap

and rotation.

Your extended splash screen should adjust the coordinates of its splash screen image, if

the app is snapped or the device is rotated, by listening for the onresize event. This

resizing helps ensure that your app's loading experience looks smooth and professional,

regardless of how your users manipulate their device or change the layout of apps on

their screen.

 If you show your extended splash screen for more than a few seconds, add a progress

ring so users know that your app is still loading.

Use the indeterminate progress ring control to help make your app seem more

responsive, by letting users know that your app hasn’t crashed and will be ready soon.

Additionally, consider using this control to display a single line of text alongside the

progress ring, to briefly explain to your users what your app is doing.

Making your app seem more responsive and keeping your users informed is a great way

to create a positive loading experience for users.

APP ACTIVATION

Roaming app data

© 2012 Microsoft. All rights reserved. | August 14, 2012

297

Roaming app data
Windows 8 automatically transitions certain app data between user devices. No heavy lifting

required from the app developer. Roaming app data provides a great end-user experience for

apps where the user utilizes more than one device, such as a PC at work and a slate at home. To

include app data roaming where appropriate, follow these guidelines when you design your

app.

The user experience

If a user installs your app on a second device after using it on another device first, all settings

and preferences made on the first device are automatically applied and made available on the

second device. This provides a desirable user experience that involves a minimum of setup work

for your app on the user's second device, since everything is already configured according to

user preference. Any future changes to these settings and preferences will also transition

automatically, providing a uniform experience across all devices, even if devices are being

upgraded or replaced over time. Consider this example scenario: Peter just bought a new

Windows 8 slate and opens his favorite calendar app. He is delighted to find that all his calendar

accounts are already configured, and they show his calendar appointments in his familiar color

preferences that he established on his laptop.

In addition to settings and preferences, Windows 8 also transitions session or state information.

This allows end-users to continue to use an app session that was closed or abandoned on one

device, when they transfer to a secondary device. Consider this example scenario: Susie was

playing her favorite puzzle game just before she headed out to work. She takes out her

Windows 8 slate on the bus, opens the puzzle game, and can continue playing from her last

game state, which includes her new high score.

Design guidelines

Utilizing roaming app data in your app is easy and does not require significant changes to code.

It is best to utilize roaming app data for all size-bound data and settings that are used to

preserve a user’s settings preferences as well as app session state. To make sure that your app

makes the best use of this feature, follow these design guidelines.

DO

Do use roaming for preferences and customizations

Roam any app data that the end-user would choose to set on each device, such as user

preferences. This could include info such as:

APP ACTIVATION

Roaming app data

© 2012 Microsoft. All rights reserved. | August 14, 2012

298

 Favorite sports team (sports news app)

 Favorite movie genre (media app)

 Background color customization

 App view preferences

Do use roaming to let users continue a task across devices

Roam any app data that enables users to pick up a task right where they left off on a different

device. This could include information like:

 Last position in the app context (e.g. a page number in book-reader app)

 High score or game level information

 Navigation back stack

 Composing a to-do list

 Composing email

DON'T

Use these guidelines to avoid creating a poor user experience.

Don’t use roaming for information that is local to a device

Sometimes, there is information that is meaningful only on a specific device – for example, a

path name to a local file resource on a PC. This information should not be part of roaming

app data and must remain local to a device. You may still decide to roam local information.

But ensure that the app is capable of gracefully recovering, in case the information is not

valid on the secondary device.

Don't use roaming to move large datasets

There is a limit to the size of app data that each app can roam. If an app hits this limit, none

of its app data can roam until the app’s total roamed app data is less than the limit again. For

this reason, it is best to restrict roaming to user preferences, links, and small data files. As part

of your app design it is important to consider how to put a bound on larger data, to not

exceed the upper limit. For example, if saving a game state requires 10 KB per game, the app

might only allow the user store up to 10 games.

APP ACTIVATION

Roaming app data

© 2012 Microsoft. All rights reserved. | August 14, 2012

299

Don't use roaming for instant syncing or for frequently changing information

Windows roams app data opportunistically and doesn't guarantee an instant sync. In

scenarios where a user is offline or on a high latency network, roaming could be delayed

significantly. Don't build a UI that depends on a sync to occur instantly. If your app frequently

changes information – for example, with up-to-the-second position in a song or movie – do

not use roaming app data. Instead pick a less frequent representation that still provides good

user experience. For example, use the current song being played, or the current movie

chapter being played. For important, time-critical settings, a special high priority settings unit

is available that provides more frequent updates.

Additional considerations

Pre-requisites

Any user can benefit from roaming app data as long as they are using a Microsoft Account to

log on to their device. App data must be written via the proper mechanisms for transition

between devices. Apps can transition data between any devices that utilize the same Microsoft

Account Connected account. Users or Group Policy Administrators can switch off roaming app

data on a device altogether. Users who do not utilize a Microsoft Account, or operate devices

where roaming app data has been switched off, can still use your app. But any app data will stay

local to each device.

Device trust

Data stored in the credential vault will transition only if a user has made a device “trusted”.

Conflict resolution

Roaming app data is not intended for simultaneous use of apps on more than one device at a

time, as it could lead to undesired and unexpected situations. In case a particular data unit has

been changed on two devices, causing a conflict in the following synchronization, the system

always favors the value that was written last. This ensures that the app utilizes the most up-to-

date information. If settings use a settings container or composites, the conflict resolution

occurs on the level of the container or composite. Then, the container or composite with the

latest change is transitioned.

The right time for writing data

APP ACTIVATION

Roaming app data

© 2012 Microsoft. All rights reserved. | August 14, 2012

300

Depending on the expected life-time of the setting, data should be written at different times.

Infrequent, slowly changing app data should be written immediately. On the other hand, app

data that changes frequently should be written only periodically, at regular intervals like once

every 5 minutes, and when the app is suspended. For example, a music app might write the

“current song” settings whenever a new song starts to play. However, the actual position in the

song should be written only on suspend.

The data changed event

Since roaming app data could change at any time, the system provides the developer with a

Data Changed event. To properly use roaming app data, the app must listen to this event and

then take the appropriate action to update with the current data.

Excessive usage protection

The system has various protection mechanisms in place to avoid inappropriate use of resources.

In case app data does not transition as expected, it is likely that the device has been temporarily

restricted. Waiting for some time usually resolves this situation automatically and no action is

required.

Versioning

App data can utilize versioning of app data to upgrade from one data structure to another. The

version number is different from the app version and can be set at will. You should use only

increasing version numbers, since data loss occurs when an app transitions to a lower data

version number that represents newer data. App data roams between apps only when they have

the same version number. For example, devices on version 2 can transition data between each

other, and devices on version 3 do the same. But there is no automatic transition between

version 2 and version 3 devices. It is the responsibility of the app to track version number at the

time of a version-number update. A newly installed app that has previously used various version

numbers on other devices starts with app data that has the highest version number available.

Testing and tools

Developers can lock their device in order to trigger a synchronization of roaming app data. If it

seems that the app data does not transition within a certain time frame, check the following

items and make sure that:

 Your roaming app data does not exceed the maximum size.

 Your files are closed and released properly.

 There are at least two devices with the same data version for the app.

OTHER USER EXPERIENCES

Notifications

© 2012 Microsoft. All rights reserved. | August 14, 2012

301

 OTHER USER EXPERIENCES

Notifications

Appropriate use of toast notifications

 Notify the user of something personally relevant and time sensitive. Examples include:

 New emails in a mail app

 An incoming VOIP call

 A new instant message

 A new text message

 A calendar appointment or other reminder

 Notifications for which the user has explicitly opted in

 Navigate to an appropriate destination in your app when the user taps on a toast.

Consider that notifications are an invitation to switch context rather than a strictly

informational update.

 Consider that the user might not see a particular toast notification. Provide alternate

ways for the user to get the same information if it is important. You may want to retain

related information on your tile or within your app views.

 A running app can hide a toast notification if it is no longer valid. This happens, for

example, with an incoming call where the other party has hung up or has already

answered on another device.

 Combine multiple related updates that occur within a short period into a single toast

notification. For instance, if you have three new e-mails that arrive at the same time, the

app or app server should raise a single notification that states that there are three new e-

mails, rather than three separate notifications.

 Present information in the simplest possible form. If your content doesn't require a

headline, omit it. A message such as "Your download is complete." is complete and

needs no additional presentation.

 Use images when they add clear value to the message, such as a photo of the sender of

a message.

OTHER USER EXPERIENCES

Notifications

© 2012 Microsoft. All rights reserved. | August 14, 2012

302

Inappropriate use of toast notifications

 Don't use toast notifications to notify the user of something that must be seen, such as a

critical alert. To ensure that the user has seen your message, notify them in the context

of your app with a Flyout, dialog, app bar, or other inline element.

 Don't include text that tells the user to "click here to..." It is assumed that all toast

notifications have a click or tap action with a result that is made clear by the context of

the notification.

 Don't use toast notifications to notify the user of transient failures or network events,

such as a dropped connection.

 Don't notify the user of something they didn't ask to be notified about. For instance,

don't assume that all users want to be notified each time one of their contacts appears

online.

 Don't use toast notifications for anything with a high volume of notifications, such as

stock price information.

 Don't use toast notifications to notify the user of routine maintenance events, such as

the completion of an anti-virus scan.

 Don't raise a toast notification when your application is in the foreground. In that case,

consider notifying the user in the context of your app with a Flyout, dialog, app bar, or

other inline element. Listen for the PushNotificationReceived event to intercept push

notifications when your application is running.

 Don't add generic images such as icons or your app logo in the image field of a

notification.

 Don't place your app's name in the text of the notification. Users identify your

application by your app's logo, which is automatically included in the toast notification.

 Don't use your app to ask users to enable toast notifications if they have chosen to

disable them. Your app is expected to work without toast notifications.

 Don't automatically migrate your balloon notification scenarios to toast—consider that it

may be more appropriate to notify the user when they aren't immersed in a full-screen

experience (desktop style apps only).

 Don't use toast notifications for non-real time information, such as a picture of the day.

 Don't hide toast notifications unless necessary.

Guidelines for scheduled notifications

OTHER USER EXPERIENCES

Notifications

© 2012 Microsoft. All rights reserved. | August 14, 2012

303

 Guidelines for tiles Guidelines for toast notificationsFollow the recommendations in and .

Consider that guidance when planning the content of your tile or toast notification, as

well as how frequently each should be updated.

 background tasksConsider using to update the schedule periodically using the

MaintenanceTrigger class. For example, your app can initially schedule notifications a

week in advance and then use the MaintenanceTrigger class to continue to schedule

successive weeks on an ongoing basis, even without the user launching your app during

any given week.

 Consider using a timeZoneChange system trigger to respond to changes to the system

clock, such as Daylight Savings Time. By default, scheduled notifications are triggered in

Coordinated Universal Time (UTC) and are not updated automatically in response to

system clock changes. For example, a reminder app would need to change the scheduled

time of the reminders when the system time changes. To do so, your app can use a

background task that responds to the timeZoneChange trigger, adjusting its timing

appropriately.

Guidelines for periodic notifications

 Call the StartPeriodicUpdate or StartPeriodicUpdateBatch method each time your

app is launched or brought into focus. These calls ensure that the tile content is updated

each time the user launches or switches to the app.

 tiles badgesFollow the UX guidelines for and when you consider what to place on the tile

and how frequently the tile should be updated.

 Periodic tile updates support the tile notification tag used with the notification queue.

TileUpdater.startPeriodicUpdateBatchWhen using , your service can set the tag on

each notification by providing the X-WNS-Tag HTTP response header.

 Update your tile and badge XML content on your web service to match the polling

frequency of your client. For instance, if the tile is set to poll at half-hour intervals, it is

also a best practice to update the content on your web service every half an hour.

 Set the expiration on your tile or badge update to match the time period after which

your notification would no longer be useful to the user. By default, all polled tile and

badge content expires three days after the client receives them. But, if your cloud service

becomes unreachable or the user disconnects from the network for an extended period

of time, the content on your tile should not persist on the Start screen when it is no

longer relevant. For example, a shopping deal that expires at midnight should set its

expiration time to midnight.

 Do not use periodic updates for content that the user will expect to receive immediately,

such as breaking news or weather alerts. Notifications of that type are best delivered

through push notifications.

OTHER USER EXPERIENCES

Notifications

© 2012 Microsoft. All rights reserved. | August 14, 2012

304

Guidelines for push notifications

 Follow the overall tile and toast notification guidelines. Whether a tile or toast

notification is generated locally or through the cloud, it should respect the same user

guidelines.

 Register your app in the Dashboard. You cannot use Windows Push Notification

Services (WNS) unless your app is registered with the Dashboard. Your app server has to

use the specific credentials provided by the Dashboard to authenticate and send

notifications.

 Respect your user's battery life. Your users can receive notifications at any time, even

when their device is in a low-power state. The more notifications that you send, the more

resources it requires and the more frequently you wake up the device. Keep this battery

impact in mind when you determine the frequency of your notifications—increasing the

frequency of your notifications does not always increase the value of your app. For

example, if your tile content is updated too frequently, some of your updates will never

be seen by the user. Developers should choose the lowest frequency of notifications that

will still achieve a great user experience.

 Do not use push notifications for spam or with malicious intent. If an app sends

overly frequent notifications simply to be obnoxious or monopolize bandwidth, or sends

notifications that are considered spam, WNS reserves the right to protect its users. WNS

can block selected apps from using push notifications. In addition, if users report that an

app is exhibiting malicious intent, that app could be subjected to Windows Store

removal policies.

 Implement channel renewal. Channel URLs can expire and are not guaranteed to

remain the same each time you request one. Therefore, your app should request a

channel each time the app launches. If the returned channel URL is different than the

URL that you had been using, update your reference in your app server.

 Reuse your access token. Your access token can be used to send multiple notifications.

Therefore, your server should cache the access token so that it does not need to

reauthenticate each time it wants to send a notification. If the token has expired, your

app server receives an error. You should then authenticate your app server and retry the

notification.

 Be aware that WNS has no delivery guarantees. Although WNS maintains high levels

of availability and reliability, ultimately, the delivery of notifications cannot be

guaranteed. Your app should not use WNS for critical notifications.

OTHER USER EXPERIENCES

Notifications

© 2012 Microsoft. All rights reserved. | August 14, 2012

305

Security Considerations

 Do not send confidential or sensitive data through push notifications. Push

notifications are not intended to carry highly sensitive or confidential information. For

example, a bank account number or password should never be sent in a notification.

 Always secure your channel registration callback to your app server. When your app

receives its channel URL and sends it to your app server, it should send that information

securely. We recommend that the mechanism used to do so be authenticated and

encrypted.

 Validate that the channel URL is from WNS. Never attempt to push a notification to a

service that is not WNS. Always ensure that your channel URLs use the Windows.com

domain.

 Keep your app server credentials a secret. Never share your Package Security Identifier

(PKSID) and secret key with anyone. Store those credentials on your app server in a

secure manner. If you believe that your secret key has been compromised, generate a

new key. We recommended that you routinely generate a new secret key to present

villains with a moving target.

OTHER USER EXPERIENCES

Microsoft account sign-in

© 2012 Microsoft. All rights reserved. | August 14, 2012

306

Microsoft account sign-in
Your app can sign users in and out with their Microsoft accounts to access data in Microsoft

cloud services like Hotmail, Microsoft SkyDrive, and Windows Live Messenger. If your app does

this, make sure that it follows these user-experience guidelines.

Signing users in

To sign a user in, use one of the following approaches, depending on when your app needs the

user to sign in.

 If your app doesn't work until after the user signs in, show the Microsoft account sign-in

dialog immediately after the app starts.

 If your app works without needing the user to sign in first, and it needs the user to sign

in later to enable specific scenarios or features, provide the following user experience.

First, the user must click the Settings charm and then click Accounts (or its localized

equivalent). After the user does that, display a custom sign-in control—for example, a

label with the text "Sign in" (or its localized equivalent). After the user clicks this control,

display the sign-in dialog. To support this experience, use the label property of the

SettingsCommand class to display the Accounts command (or its localized equivalent).

After the user clicks the command, use the invoked property to show a SettingsFlyout

control that contains the custom sign-in control.

 If your app works without needing the user to sign in first, and it provides specific

commands that integrate with Microsoft cloud services like Hotmail, SkyDrive, and

Messenger, provide the following user experience. First, after the user executes the "save

photo" command from the app's client area or its app bar, display the sign-in dialog.

After the user is signed in, your code can complete the save task.

Signing users out

In Windows 8, if a user signs in to a device with a local or domain account that is not connected

to a Microsoft account, and then signs in to your app with a Microsoft account, your app should

provide a custom sign-out control. For example, the control could be a label with the text "Sign

out" (or its localized equivalent).

Note If the user signs in to the device with a Microsoft account or a local or domain account

that is connected to a Microsoft account, providing a custom sign-out control has no effect.

To determine whether your app should provide a custom sign-out control, your code must

provide the following user experience. First, the user must click the Settings charm and then click

Accounts (or its localized equivalent). After the user clicks the command, and if the user can

sign out, display the custom sign-out control. To do this, use the label property of the

SettingsCommand class to display the Accounts command (or its localized equivalent). After

OTHER USER EXPERIENCES

Microsoft account sign-in

© 2012 Microsoft. All rights reserved. | August 14, 2012

307

the user clicks the command, use the invoked property to show a SettingsFlyout control that

contains the custom sign-out control. However, if the user cannot sign out, simply show the

current user's name.

Things to avoid

Make sure your app:

 Doesn't display text, controls, or sign-in and sign-out dialogs other than those previously

described here. Using the Microsoft account sign-in experience helps reassure your users

that your app can't directly access their Microsoft account credentials.

 Doesn't display custom sign-in or sign-out controls anywhere other than the

SettingsFlyout control or as part of the app's task-command flow.

OTHER USER EXPERIENCES

App resources

© 2012 Microsoft. All rights reserved. | August 14, 2012

308

App resources

Guidelines for creating resources

 Do not put resources, such as UI strings and images, in code. Instead, put them into

resource files, such as .resjson or .resw files.

 Use qualifiers to support file and string resources that are tailored for different display

scales, UI languages, or high contrast settings.

 Set the default language qualifier project property.

 String resources, even those in the default language, should have a file or folder named

with the language tag.

 Add comments to your string resource for the localizer.

Guidelines for referring to resources

 Add unique resource identifiers in the code and markup to refer to resources.

 Refer to images in HTML, code, or manifests without the qualifiers.

 Listen for events that fire when the system changes and it begins to use a different set of

qualifiers. Reprocess the document so that the correct resources can be loaded.

OTHER USER EXPERIENCES

Globalization

© 2012 Microsoft. All rights reserved. | August 14, 2012

309

Globalization
Whether you plan to localize your UI or not, consider an international market when you select UI

terms and images. This planning saves time and cost for the markets you do localize to.

Customers who use a version that isn't localized in their native language will understand your UI

more easily.

The following table presents the practices recommended for internationalizing your apps.

Practice Description

Use the correct formats

for numbers, dates,

times, addresses, and

phone numbers.

The formatting used for numbers, dates, times, and other forms of

data varies between cultures, regions, languages, and markets. If

you're displaying numbers, dates, times, or other data, use

globalization APIs to get the format that the user prefers .

Support international

paper sizes.

The most common paper sizes differ between countries, so if you

include features that depend on paper size, like printing, be sure to

support and test common international sizes.

Support international

units of measurement

and currencies.

Different units and scales are used in different countries, although

the most popular are the metric system and the imperial system. If

you deal with measurements, like length, temperature, or area, get

the correct system measurement by using the Globalization

namespace. If your app supports displaying currencies, use the

correct formatting. You can also get the currency for the user’s

geographic region by using the CurrenciesInUse property.

Display text and fonts

correctly.

The ideal font, font size, and direction of text vary between

different markets.

Use Unicode for

character encoding.

By default, recent versions of Microsoft Visual Studio use Unicode

character encoding for all documents. If you're using a different

editor, be sure to save source files in the appropriate Unicode

character encodings. All Windows Runtime APIs return UTF-16

encoded strings.

Record the language of When your app asks users for text input, record the language of

OTHER USER EXPERIENCES

Globalization

© 2012 Microsoft. All rights reserved. | August 14, 2012

310

input. input. This ensures that when the input is displayed later it's

presented to the user with the appropriate formatting. Use the

CurrentInputMethodLanguage property to get the current input

language.

Don't use language to

assume a user's

location, and don't use

location to assume a

user's language.

In Windows, the user's language and location are separate

concepts. A user can speak a particular regional variant of a

language, like en-gb for English as spoken in Great Britain. But, the

user can be located in an entirely different country or region.

Consider whether your apps require knowledge about the user's

language, like for UI text, or location, like for licensing issues.

Avoid colloquialisms

and metaphors.

Language that's specific to a demographic group, such as culture

and age, can be hard to understand or translate, because only

people in that demographic group use that language. Similarly,

metaphors might make sense to one person but mean nothing to

someone else. For example, a "bluebird" means something specific

to those who are part of skiing culture, but those who aren’t part of

that culture don’t understand the reference. If you plan to localize

your app and you use an informal voice or tone, be sure that you

adequately explain to localizers the meaning and voice to be

translated.

Don't use technical

jargon, abbreviations,

or acronyms.

Technical language is less likely to be understood by non-technical

audiences or people from other cultures or regions, and it's difficult

to translate. People don't use these kinds of words in everyday

conversations. Technical language often appears in error messages

to identify hardware and software issues. At times, this might be

necessary, but you should rewrite strings to be non-technical.

Avoid images that

might be offensive.

Images that are appropriate in your own culture are sometimes

offensive or misinterpreted in other cultures. Avoid use of religious

symbols, animals, or color combinations that are associated with

national flags or political movements.

Avoid political offense

in maps or when

referring to regions.

Maps sometimes include controversial regional or national

boundaries, and they're a frequent source of political offense. Be

careful that any UI used for selecting a nation refers to it as a

OTHER USER EXPERIENCES

Globalization

© 2012 Microsoft. All rights reserved. | August 14, 2012

311

"country/region". Putting a disputed territory in a list labeled

"Countries", like in an address form, could get you in trouble.

Don't use string

comparison by itself to

compare language tags.

BCP-47 language tags are complex. There are a number of issues

when comparing language tags, including issues with matching

script information, legacy tags, and multiple regional variants. The

resource management system in Windows takes care of matching

for you. You can specify a set of resources in any languages, and

the system chooses the appropriate one for the user and the app.

Don't assume that

sorting is always

alphabetic.

For languages that don't use Latin script, sorting is based on things

like pronunciation, number of pen strokes, and other factors. Even

languages that use Latin script don't always use alphabetic sorting.

For example, in some cultures, a phone book might not be sorted

alphabetically. The system can handle sorting for you, but if you

create your own sorting algorithm, be sure to take into account the

sorting methods used in your target markets.

Guidelines for localization

The following table presents the practices recommended for adapting your app for a specific

language, region, market, or audience.

Practice Description

Separate resources such

as UI strings and images

from code.

Design your apps so that resources, like strings and images, are

separated from your code. This enables them to be

independently maintained, localized, and customized for different

scaling factors, accessibility options, and a number of other user

and machine contexts.

Separate string resources from your app's code to create a single

language-independent codebase. Always separate strings from

app code and markup. And place them into a resource file, like a

ResW or ResJSON file.

Use the resource infrastructure in Windows to handle the

selection of the most appropriate resources to match the user's

OTHER USER EXPERIENCES

Globalization

© 2012 Microsoft. All rights reserved. | August 14, 2012

312

runtime environment.

Isolate other localizable

resource files.

Place other files that require localization, like images that contain

text to be translated or that need to be changed due to cultural

sensitivity, in folders tagged with language names.

Set your default

language, and mark all of

your resources, even the

ones in your default

language.

Always set the default language for your apps appropriately. The

default language determines the language that's used when the

user doesn't speak any of the supported languages of the app.

Mark default language resources, for example en-us/Logo.png,

with their language, so the system can tell which language the

resource is in and how it's used in particular situations.

Determine the resources

of your app that require

localization.

What needs to change if your app must be localized for other

markets? Text strings require translation into other languages.

Images sometimes must be adapted for other cultures. Consider

how localization affects other resources that your app uses, like

audio or video.

Use resource identifiers in

the code and markup to

refer to resources.

Instead of having string literals or specific file names for images in

your markup, use references to the resources. Be sure to use

unique identifiers for each resource.

Enable text size to

increase.

Allocate text buffers dynamically, since text size sometimes

expands when translated. If you must use static buffers, make

them extra-large (perhaps doubling the length of the English

string) to accommodate potential expansion when strings are

translated. There may also be limited space available for a user

interface. To accommodate localized languages, ensure that your

string length is approximately 40% longer than what you would

need for the English language. For short strings, such as single

words, you may need as much as 300% more space. In addition,

enabling multiline support and text-wrapping in a control leaves

more space to display each string.

Support mirroring. Text alignment and reading order can be left-to-right, as in

English, or right-to-left (RTL), as in Arabic or Hebrew. If you are

localizing your product into languages that use a different

OTHER USER EXPERIENCES

Globalization

© 2012 Microsoft. All rights reserved. | August 14, 2012

313

reading order than your own, be sure that the layout of your UI

elements supports mirroring. Even items such as back buttons, UI

transition effects, and images sometimes need to be mirrored.

Reduce localization costs. Reduce localization costs by avoiding use of text in images or

speech in audio files. If you're localizing to a language with a

different reading direction than your own, using symmetrical

images and effects make it easier to support mirroring.

Use short strings. Shorter strings are easier to translate and enable translation

recycling. Translation recycling saves money because the same

string isn't sent to the localizer twice.

Strings longer than 8192 characters are not supported by some

localization tools, so keep string length to 4000 or less.

Provide strings that

contain an entire

sentence.

Provide strings that contain an entire sentence, instead of

breaking the sentence into individual words, because the

translation of words often depends on their position in a

sentence. Also, don't assume that a phrase with multiple

parameters is translated with those parameters in the same order

for every language.

Comment strings. Ensure that strings are properly commented, and only the strings

that must be translated are provided to localizers. Over-

localization is a common source of problems.

Don't re-use strings in

different contexts.

Don't re-use translated strings in different contexts, because even

simple words like "on" and "off" may be translated differently,

depending on the context.

OTHER USER EXPERIENCES

Globalization

© 2012 Microsoft. All rights reserved. | August 14, 2012

314

Disclaimer: This document is provided “as-is”. Information and views expressed in this document, including URL and

other Internet website references, may change without notice. Some information relates to pre-released product which

may be substantially modified before it’s commercially released. Microsoft makes no warranties, express or implied, with

respect to the information provided here. You bear the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is

intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may

copy and use this document for your internal, reference purposes.

© 2012 Microsoft. All rights reserved.

	Table of contents
	INTRODUCTION
	Microsoft design principles
	Show pride in craftsmanship
	Be fast and fluid
	Be authentically digital
	Do more with less
	Win as one

	Anatomy of a Windows Store app
	Tiles
	The app page, or canvas
	View states
	App bars
	Charms
	Context menus
	Message dialogs
	Flyouts
	Toasts

	Design for form factors
	Touch, mouse, and keyboard input
	Device capabilities
	Fluid, multiple views of your app
	Built-in graphical scaling
	Roaming data

	NAVIGATION, LAYOUTS, AND VIEWS
	Navigation design
	Hierarchical system
	Layers in the hierarchy

	Flat system
	Content pages

	Navigation anatomy
	Navigating with the edge swipe
	Navigating with header menus and section labels
	Navigating with filters, pivots, sorts, and views
	The top app bar
	App bar view switching

	Guidelines for navigation links
	When to use a link
	Dos and don'ts

	Page layout design
	What is the grid system?
	App page header
	Content region
	Horizontal padding
	Vertical padding
	Horizontal padding between groups

	View state design
	View state
	Screen orientation
	User interactions
	Guidelines for views
	Guidelines for scaling to pixel density
	Guidelines for scaling to screens
	Screen size
	Minimum screen resolutions
	Designing for larger screens
	Fixed layout
	Fixed layout: Scale to Fit
	Adaptive layout
	Adaptive layout: manage the space
	Testing your app layout

	Guidelines for snapped and fill views
	Snapped layouts
	View State and Window Dimensions

	Guidelines for resizing

	Branding design
	Visual elements of your brand guideline
	Examples that evoke unique brands
	Contoso French Bakery brand
	Contoso Sandwich Truck brand
	Alternate Contoso Sandwich Truck brand

	TOUCH, COMMANDING, AND CONTROLS
	Touch interaction design
	Windows 8 touch language
	Windows 8 Touch posture
	Windows 8 Touch targets
	Guidelines for touch input
	Guidelines for cross-slide
	When to use cross-slide
	Selecting
	Selection basket
	Queues
	Moving (drag and drop)

	Guidelines for optical zoom and resizing
	Guidelines for panning
	The scroll control
	Panning indicators
	Types of panning
	Snap points
	Rails
	User experience guidelines
	One-dimensional overflow
	Two-dimensional overflow
	Paged view
	Logical and key points
	Panning indicators and scroll bars
	Chaining embedded or nested content

	Guidelines for rotation
	When to use rotation
	Free rotation
	Constrained rotation
	Combined rotation

	Guidelines for Semantic Zoom
	Navigating with Semantic Zoom
	Scroll jump
	Transitions
	Considerations and recommendations
	Dos and Don'ts
	Dos
	Don'ts

	Guidelines for selecting text and images
	Touch optimization
	Editable and non-editable content
	Editable content
	Non-editable content

	Guidelines for targeting
	Measurements and scaling
	Thresholds
	Target sizes
	Targeting assistance
	Tethering
	Scrubbing

	Guidelines for visual feedback
	Visual feedback
	Informational user interface
	Occlusion tooltips for scrubbing and small targets
	Occlusion tooltips for actions and commands
	Rich tooltip or informational pop-up
	Self-revealing interactions
	Context menu

	Guidelines for touch keyboard

	Commanding design
	Use the canvas
	Use the charms
	Use the app bar
	Use context menus
	Command placement
	Organize commands
	Create command sets
	Create menus
	Place commands on the app bar
	Use standard placement for common commands

	Controls
	Guidelines for text input
	Is this the right control?
	Choosing the right single-line text input control
	Dos and don’ts for single-line input boxes
	Choosing the right multi-line text input control
	Dos and don'ts for multi-line text input controls

	Guidelines for spell checking
	Dos and Don'ts

	Guidelines for thumbnails
	Appropriate use of thumbnails
	Inappropriate use of thumbnails
	User experience guidelines
	Get thumbnail images that give users the best previews for the kinds of files they are browsing
	Displaying previews of pictures or videos
	Displaying previews of documents or music files
	Displaying a preview for a single item

	Guidelines for Flyouts
	When not to use a Flyout
	Designing a Flyout
	Parts of a Flyout

	Guidelines for message dialogs
	Appropriate use of message dialogs
	Urgent information
	Errors
	Questions

	Inappropriate use of message dialogs

	Guidelines for errors
	Guidelines for buttons
	Is this the right control?
	Choosing the right type of button
	Dos and Don'ts

	Guidelines for login controls
	Login settings
	Login scenarios
	Required login
	Recommended login
	Optional login
	Contextual login

	Logout UI
	Personalizing the app on login

	Guidelines for app bars
	Guidelines for commands in the app bar
	Handling the right mouse button

	Guidelines for context menus
	Appropriate use of context menus
	Inappropriate use of context menus
	User experience guidelines

	Guidelines for check boxes
	Is this the right control?
	Dos and don'ts

	Guidelines for DatePickers
	Guidelines for TimePickers
	Guidelines for radio buttons
	Is this the right control?
	Dos and don'ts

	Guidelines for the Select control
	Is this the right control?
	Choose the right mode
	When to use the drop-down list mode
	When to use the list box mode

	Guidelines for sliders
	Is this the right control?
	Choosing the right layout: horizontal or vertical
	Guidelines for the range direction
	Guidelines for steps and tick marks
	Guidelines for labels
	Slider labels
	Range labels
	Value labels

	Dos and don'ts

	Guidelines for toggle switches
	Is this the right control?
	Choosing between toggle switch and check box

	Dos and Don'ts

	Guidelines for the Rating control
	Is this the right control?
	Dos and don'ts

	Guidelines for progress controls
	Is this the right control?
	Choosing the right type of progress control style
	General guidelines
	Guidelines for determinate tasks
	Dos and don'ts for determinate tasks
	Guidelines for indeterminate tasks
	Indeterminate progress ring
	Indeterminate progress bar

	Guidelines for status text
	Layout patterns

	Guidelines for tooltips
	Is this right control?
	Dos and don’ts

	Guidelines for FlipView controls
	Is this the right control?
	Dos and Don'ts

	Guidelines for ListView controls
	Is this the right control?
	The interaction model
	Choosing the right type of ListView control style
	List layout
	Grid layout
	Dos and don'ts for list layout
	Guidelines for grid layout
	Dos and don'ts for grid layout
	General guidelines
	Managing the ListView layout when going to a snapped view

	Guidelines for file pickers
	Appropriate use of file pickers in apps
	Inappropriate use of file pickers in apps
	User experience guidelines: accessing and saving files and folders

	Guidelines for find-in-page
	User experience guidelines

	Charms, contracts, and devices
	Guidelines for sharing content
	User experience with lengthy operations
	Best practices
	Source apps
	Target apps

	Guidelines for creating custom data formats
	Why custom formats?
	Defining a custom format
	Choosing a data type
	Custom format example: WebFileItems
	Adding custom formats to your app

	Guidelines for clipboard commands
	Where and how to support copy and paste
	Where not to use copy and paste
	Accessing copy and paste commands in your app

	Guidelines for search
	Appropriate use of the Search charm
	Inappropriate use of the Search charm
	Customizing suggestions and placeholder text in the search pane
	Designing a search results page
	Tips for activation from search

	Guidelines for file picker contracts
	Appropriate use of file pickers contracts in apps
	User experience guidelines: providing files, a save location, and file updates
	Additional UX guidelines: providing files
	Additional UX guidelines: providing a save location
	Additional UX guidelines: providing file updates

	Guidelines for app settings
	User experience guidelines
	Choose which app features are accessed in app settings
	Add your entry points for app settings to the settings windows
	Create settings Flyouts
	Add settings to settings Flyouts

	Inappropriate use of settings

	Guidelines for app help
	Appropriate use of Help
	Dos
	Don'ts

	Guidelines for devices that access personal data
	How the user controls the app's use of sensitive devices.
	The consent prompt
	The Settings charm

	Start using the device only if it's needed
	First use of the device must be on the main UI thread
	What if access to a device is turned off?
	Guidelines for notifying the user of device revocation
	Display a flyout or inline text if the device is non-essential
	Display a dialog if the device capability is essential
	Other guidelines for revocation messages

	Guidelines for location-aware apps
	Performance guidelines
	Use one-time location requests when updates aren't needed
	Adjust the movement threshold
	Set the report interval
	Set the desired accuracy
	Use geocoordinate accuracy
	Consider startup delay
	Consider background behavior

	User experience guidelines
	Start using the location object only when the app requires location data
	Use the main UI thread for the first use of Geolocation
	Provide UI for indicating accuracy
	Provide UI for manually entering location
	Provide UI for manually refreshing location

	Guidelines for responding to changes in location settings
	Show an appropriate error message or dialog when location is disabled or not available
	Discard the location object and event listeners when location is disabled
	Clear cached location when location is disabled
	Provide UI for re-enabling location

	Privacy considerations

	Guidelines for developing using proximity
	Proximity Connections
	Best practices

	Guidelines for developing print-capable apps
	Best practices for deciding how to create your printed content
	Best practices for using a custom print template with HTML Content
	Best practices for customizing settings in the print window

	Guidelines for the camera UI
	Appropriate use of the camera UI
	Inappropriate use of the camera UI

	Guidelines for developing audio-aware apps
	Best practices for using playback manager in an app
	Best practices for managing call control

	Animations
	List animations
	Appropriate use of list animations
	Inappropriate use of list animations

	Transition animations
	Appropriate use of content transitions
	Inappropriate use of content transitions
	Appropriate use of page transitions
	Inappropriate use of page transitions

	Drag-and-drop animations
	Appropriate use of drag and drop animations
	Inappropriate use of drag and drop animations

	Transient UI animations
	Appropriate use of transient UI animations
	Inappropriate use of transient UI animations

	Edge-based UI animations
	Appropriate use of edge UI and panel animations
	Inappropriate use of edge UI and panel animations

	APP ACTIVATION
	Tiles
	User experience guidelines
	Tile design philosophy
	Choosing between a square and wide tile size
	Using default tiles
	Appropriate use of default tiles
	Inappropriate use of default tiles
	Using peek templates
	Appropriate use of peek templates
	Inappropriate use of peek templates
	Other design considerations
	Choosing the right notification method to update your tile
	How often should your tile update? If you choose to use a live tile, consider how often the tile should be updated.
	Appropriate use of tile notifications
	Inappropriate use of tile notifications

	Choosing a badge image
	Numeric badges
	Glyph badges

	Guidelines for badges
	Appropriate use of badges
	Inappropriate use of badges

	Guidelines for secondary tiles
	Appropriate use of secondary tiles
	Inappropriate use of secondary tiles

	Guidelines for lock screen apps
	Lock screen basics
	Characteristics of a good lock screen presence
	The information is quickly digestible
	The information is always up-to-date
	Good examples: up-to-date information
	Bad examples: out-of-date information
	The information is understandable without more context
	Good examples: understandable without more context
	Bad examples: not understandable without more context
	The information should be personal and useful to the user
	Good examples: information personalized to the user
	Bad examples: impersonal information
	The information should display only when there is a change
	Good examples: information displayed only when it's useful
	Bad examples: long-running status
	Only toast notifications should play a sound on arrival

	When to use the lock screen request API

	Basic app suspend and resume
	Launch with file types and protocols
	Splash screens
	Appropriate use of the splash screen
	Inappropriate use of the splash screen
	User experience guidelines: splash screen
	User experience guidelines: extended splash screen

	Roaming app data
	The user experience
	Design guidelines
	DO
	DON'T

	Additional considerations
	Pre-requisites
	Device trust
	Conflict resolution
	The right time for writing data
	The data changed event
	Excessive usage protection
	Versioning
	Testing and tools

	OTHER USER EXPERIENCES
	Notifications
	Appropriate use of toast notifications
	Inappropriate use of toast notifications
	Guidelines for scheduled notifications
	Guidelines for periodic notifications
	Guidelines for push notifications
	Security Considerations

	Microsoft account sign-in
	Signing users in
	Signing users out
	Things to avoid

	App resources
	Guidelines for creating resources
	Guidelines for referring to resources

	Globalization
	Guidelines for localization

